Cho tam giác ABC vuông tại A và diện tích là 1 gọi A' ; B' và C' lần lượt là các điểm đối xứng với A,B,C qua các trục BC,AC,AB. Tính diện tích tam giác A'B'C'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Có \(\Delta ABC\) vuông
=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)
2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : S\(\Delta ABC\) = S\(\Delta ABH\) + S\(\Delta ACH\)
=> \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)
=> \(\dfrac{AH.BC}{2}\) = 96
=> AH = 96 . \(\dfrac{2}{BC}\) = 96 . \(\dfrac{2}{20}\) = 9.6 (cm)
3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow50^2=30^2+40^2\)* đúng *
Vậy tam giác ABC vuông tại A
b, Ta có : \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.40.30=600\)cm2
c, biết mỗi cách tam giác đồng dang :))
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{1200}{50}=24\)cm
a, ta có:gọi H là giao điểm của PQ và AB
P là trung điểm của BC , tam giác ABC là tam giác vuông tại A
suy ra AP là đg trung tuyến của tam giác ABC
suy ra: AP=PB=> tam giác APB cân tại P
xét tam giác ABP cân P có PH vuông góc vs AB suy ra AH=HB(vì trong 1 tam giác cân đg cao cx là đg trung tuyến)
xét tú giác APBQ có: BH=AH,QH=PH
suy ra tứ giác APBQ là hbh
lại có: AB vuông góc vs QP tại H
suy ra tứ giác APBQ là hình thoi
sử dụng dl pytago tính đc BC=10
ta có: BP=5 cm( vì BP=CP=1/2 BC)
BH=3 cm( vì BH=AH=1/2AB)
theo đl pitago vào tam giác vuong BHP tính đc HP=4 cm
vậy PQ=8 cm( vì HP=HQ=1/2 PQ)
diện tích hình thoi APBQ là:
1/2(PQ*AB)=1/2(8*6)=24 cm^2
hok tốt
1 diện tích tam giác là: (16x12):2= 96
2
2) Có ΔABC vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : SΔABC = SΔABH + SΔACH
=> BH.AH/2+HC.AH/2=SΔABC
=> BH^2.AH+HC^2.AH/2=SΔABC
=> AH.(BH^2+HC)2=SΔABC
=> AH.BC^2/2 = 96
=> AH = 96 . 2/BC = 96 . 2/20 = 9.6 (cm)
3) Có ΔABH vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)