K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2015

D A B C H K 45

Kẻ 2 đường cao AH và BK

=> ABKH là hình chữ nhật 

=> AB = HK = 13cm

=> DH = KC = (DC - HK) : 2 = (25 - 13) : 2 = 6cm

Trong tam giác AHD có : góc ADH = 450; góc AHD = 900 => góc DAH = 450

=> tam giác AHD vuông cân tại H

=> AH = DH = 6cm

Vậy SABCD = \(\frac{\left(AB+CD\right).AH}{2}=\frac{\left(13+25\right).6}{2}=114cm^2\)

4 tháng 2 2016

giải sai bét kq= 76 cm 2

3 tháng 7 2023

A B C B

Đề bài phải sửa thành "biết AD=AB" mới làm được

a/

ABCD là hình thàng cân => AD=BC

Mà AD=AB (gt)

=> AD=BC

b/

ABCD là hình thang cân

\(\Rightarrow\widehat{BAD}=\widehat{ABC}\)

\(\widehat{BCD}+\widehat{ABC}=180^o\) (Hai góc trong cùng phía)

\(\Rightarrow\widehat{BCD}+\widehat{BAD}=180^o\)

=> ABCD là tứ giác nội tiếp (Tứ giác có tổng 2 góc đối bù nhau là tứ giác nt)

Ta có

Cung AB và cung BC có hai dây trương cung bằng nhau

AB=BC (cmt) => sđ cung AB = sđ cung BC (1)

\(sđ\widehat{ADB}=\dfrac{1}{2}sđcungAB\) (góc nội tiếp) (2)

\(sđ\widehat{CDB}=\dfrac{1}{2}sđcungBC\) (góc nội tiếp) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{ADB}=\widehat{CDB}\) => DB là phân giác của \(\widehat{ADC}\)

13 tháng 9 2020

kẻ bk ⊥ dc ag ⊥ dc

abcd là ht cân

suy ra kc +dg+gk=dc

2kc +ab =dc

kc= dc -ab trên 2 = 10-4 trên 2=3 cm

bk mũ 2 = bc mũ 2 - kc mũ 2 = 5 mũ 2 - 3 mũ 2 =4cm

ta có ih song song kb

di = ib

suy ra ih là đường tb

suy ra ih =1 phần 2 kb = 1 phần 2 nhân 4 =2 cm

4 tháng 12 2015
Mình giải vầy ko biết đúng không. Cho AB vuông góc với HC tại N có: AN vuông với NC NC vuông với HC(do AB//HC) AH vuông với HC(gt) => ANCH là hcn Xét 2 tam giác vuông ∆AHD và ∆CBN có AD=BC(gt) ANH=NC(ANCH là hcn. Cmt) =>∆AHD=∆CBN(ch_cgv) Có: S_ABCD=S_AHD+S_ABCH <=>S_ABCD=S_CBN+S_ABCH <=>S_ABCD=S_ANCH=12.8=96
4 tháng 12 2015

bạn cũng xem phim xứ giả tử thần à

3 tháng 7 2023

a) Xét 2 tam giác AMC và BMD có:

\(\widehat{C}=\widehat{D}\) (góc kề một đáy)

\(AC=BD\) (cạnh bên)

\(MC=MD\) (giả thiết)

\(\Rightarrow\Delta AMC=\Delta BMC\) (cạnh.góc.cạnh)

\(\Rightarrow AM=BM\)

b) Xét 2 tam giác NMA và NMB có:

\(NA=NB\) (giả thiết)

\(NM\): cạnh chung

\(MA=MB\) (chứng minh trên)

\(\Rightarrow\Delta NMA=\Delta NMB\)

\(\Rightarrow\widehat{MNA}=\widehat{MNB}\)

Mà 2 góc \(\widehat{MNA}=\widehat{MNB}\) là 2 góc kề bù, nên:

\(\widehat{MNA}=\widehat{MNB}=\dfrac{180^o}{2}=90^o\)

Vậy MN là đường cao: