K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. \(S=1+3+3^2+....+3^{98}\)

\(\Leftrightarrow S=\left(1+3+3^2\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{96}+3^{97}+3^{98}\right)\)

\(\Leftrightarrow S=13+3^4.\left(1+3+3^2\right)+...+3^{96}.\left(1+3+3^3\right)\)

\(\Leftrightarrow S=13+3^4.13+...+3^{96}.13\)

\(\Leftrightarrow S=13.\left(1+3^4+...+3^{96}\right)⋮13\) ( đpcm )

7 tháng 8 2019

1.

S = 1+ 3 + 32 + 33 +... + 398

S = (1 + 3 + 32) + (33 + 34 + 35) + ... + (396 + 397 + 398)

S = (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 396(1 + 3 + 32)

S = 13 + 32 . 13 + ... + 396 . 13

S = 13 (1 + 32 + ... + 396) ⋮ 13 (đpcm)

1 tháng 11 2021

\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)

S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)

S = (-20) + 34 . (-20) +.... + 396 . (-20)

S = (-20) . (1 + 34 +...+ 396

\(\Rightarrow\)\(⋮\) 20 

(Ko bt có đúng ko)

*KO CHÉP MẠNG*

 

13 tháng 3 2021

qua đúng

 

29 tháng 10 2018

a) Vì S có 99 số hạng nên ta chia thành 33 nhóm, mỗi nhóm 3 số hạng như sau\(S=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)

\(S=13+\left(3^3.1+3^3.3+3^3.3^2\right)+...+\left(3^{96}.1+3^{96}.3+3^{96}.3^2\right)\)

\(S=13+3^3.\left(1+3+3^2\right)+...+3^{96}.\left(1+3+3^2\right)\)

\(S=13+3^3.13+...+3^{96}.13⋮13\)(đpcm)

29 tháng 10 2018

a)   S= 1+3+3+33 +............+398

       S=(1+ 3+ 32) +...............+ (396 +397 +398)

       S= 13+..............+396x(1+3+33)

       S= 13+...............+396x13

       S=13x(1+..........396)

Vì 13x(1+...........396)  : 13 thì hết nên => S chia hết cho 13

23 tháng 6 2023

  a,

S  =     1 -  3 + 32 - 33+...+398 - 399

S  =   30 - 31 + 32 - 33+...+ 398 - 399

xét dãy số: 0; 1; 2; 3;...;99 

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)

100 : 4 = 25

Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì: 

S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)

S = - 20+...+ 396.(1 - 3 + 32 - 33)

S = - 20 +...+ 396.(-20)

S = -20.( 30 + ...+ 396) (đpcm)

b,

  S           = 1 - 3 + 32 - 33+...+ 398 - 399

3S          =      3  - 32 + 33-...-398  + 399 - 3100

3S + S   =    - 3100 + 1

4S        = - 3100 + 1 

 S        = ( -3100 + 1): 4

S        = - ( 3100 - 1) : 4

Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)

 

19 tháng 12 2021

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

20 tháng 12 2021

Mọi người giúp mik với nhé

có nên giúp ko nhể

26 tháng 12 2022

a) A=3+32+33+34+35+36+....+328+329+330

⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔A=3.13+34.13+....+328.13

⇔A=13(3+34+....+328)⋮13(dpcm)

b) A=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔A=3.364+....+325.364

⇔A=364(3+35+310+....+325)

 

 

21 tháng 12 2015

A=1+3+3^2...+3^30  (1)

Nhan 2 ve voi 3 ta duoc : 

3A=3+3^2+3^3+...+3^31             (2)

Lay (2)-(1) ta duoc : 

2A=1+3^31

2A=1+...7

2A=...8

A=...8:2

A=...4

Vay A khong phai la so chinh phuong

**** nhe