Cho a,b,c,d,m là các hằng số thỏa mãn:
a+d=b+c. Tìm Min của:
A=(x+a)(x+b)(x+c)(x+d)=m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề nghe cứ sao sao ý (mk góp ý thui đừng ném gạch đá nha)
\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)+8\)
\(A=\left(x^2+6x\right)\left(x^2+6x+8\right)+8\)
Đặt \(t=x^2+6x\)
\(A=t\left(t+8\right)+8\)
\(A=t^2+8x+16-8\)
\(A=\left(t+4\right)^2-8\ge-8\left(\forall t\right)\)
\("="\Leftrightarrow t=-4\Leftrightarrow x^2+6x+4=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-3-\sqrt{5}\\x=-3+\sqrt{5}\end{cases}}\)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)
A chia hết cho 5, chia hết cho 49 nên A chứa các thừa số nguyên tố 5 và 7. Số 10 chỉ có một cách viết thành một tích của hai thừa số lớn hơn 1 là 5. 2 (và không thể viết thành một tích của nhiều hơn hai thừa số lớn hơn 1). Do đó :
Gia su :f(x)=0 tai x=1
=>a1^3+b1^2+c1+d=0
hay a+b+c=0 (1)
ma a+b+c=0 (gt) (2)
Tu1va 2 suyra:x=1 la nghiem cua da thuc f(x)
bn kham khảo ở
chuyên đề cực trị GTLN và GTNN , rất chi tiết và đầy đủ
vào thống kê của mk nhé
hc tốt