K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

ĐKXĐ: \(\forall x\in R\)

Đặt \(\sqrt{x^2+1}=a\left(a>0\right)\). Khi đó phương trình cho trở thành:

\(\left(4x-1\right)a=2a^2+2x-1\)

\(\Leftrightarrow2a^2+2x-1-4ax+a=0\)

\(\Leftrightarrow2x\left(1-2a\right)+2a^2+a-1=0\)

\(\Leftrightarrow2x\left(1-2a\right)-\left(a+1\right)\left(1-2a\right)=0\)

\(\Leftrightarrow\left(1-2a\right)\left(2x-a-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=1\\a=2x-1\end{cases}}\Rightarrow\orbr{\begin{cases}2\sqrt{x^2+1}=1\left(1\right)\\\sqrt{x^2+1}=2x-1\left(2\right)\end{cases}}\)

Phương trình (1) \(\Leftrightarrow x^2+1=\frac{1}{4}\Leftrightarrow x^2=-\frac{3}{4}\left(l\right)\)

Phương trình (2) \(\Leftrightarrow\hept{\begin{cases}2x-1\ge0\\3x^2-4x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\left(3x-4\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x=0\end{cases}\left(l\right)}\) hoặc \(\hept{\begin{cases}x\ge\frac{1}{2}\\x=\frac{4}{3}\end{cases}\left(c\right)}\)

Vậy phương trình cho có nghiệm duy nhất \(x=\frac{4}{3}\).

22 tháng 7 2021

mong mọi người giải giúp em vs gianroigianroi

NV
20 tháng 6 2021

Đặt \(\sqrt{x^2+1}=t>0\)

\(\Rightarrow\left(4x-1\right)t=2t^2-2x\)

\(\Leftrightarrow2t^2-\left(4x-1\right)t-2x=0\)

\(\Delta=\left(4x-1\right)^2+16x=\left(4x+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{4x-1-\left(4x+1\right)}{4}=-\dfrac{1}{2}\left(loại\right)\\t=\dfrac{4x-1+4x+1}{4}=2x\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+1}=2x\) (\(x\ge0\))

\(\Leftrightarrow x^2+1=4x^2\)

\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\)

30 tháng 1 2023

ĐKXĐ : \(\left\{{}\begin{matrix}4x^2+2y+2\ge0\\3x+y\ge0\end{matrix}\right.\)

Ta có : \(\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)=3\)

\(\Leftrightarrow\dfrac{3}{\sqrt{4x^2+3}+2x}.\dfrac{3}{\sqrt{y^2-2y+4}+y-1}=3\)

\(\Leftrightarrow\left(\sqrt{4x^2+3}+2x\right)\left(\sqrt{y^2-2y+4}+y-1\right)=3\)

\(\Rightarrow\left(\sqrt{4x^2+3}+2x\right)\left(\sqrt{y^2-2y+4}+y-1\right)=\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)\)

\(\Leftrightarrow2x\sqrt{y^2-2y+4}+\left(y-1\right).\sqrt{4x^2+3}=0\)

\(\Leftrightarrow2x\sqrt{y^2-2y+4}=\left(1-y\right).\sqrt{4x^2+3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2.\left(y^2-2y+4\right)=\left(y^2-2y+1\right).\left(4x^2+3\right)\\2x.\left(1-y\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2=y^2-2y+1\\2x\left(1-y\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y-1\\2x=1-y\end{matrix}\right.\\2x\left(1-y\right)\ge0\end{matrix}\right.\)

Với 2x = 1 - y

Khi đó ta có \(\sqrt{4x^2+2y+2}-\sqrt{3x+y}=2x+1\)

\(\Leftrightarrow\sqrt{4x^2-4x+4}-\sqrt{x+1}=2x+1\)      (ĐK : \(x\ge-1\))

\(\Leftrightarrow2\sqrt{x^2-x+1}-\sqrt{x+1}=2x+1\)

\(\Leftrightarrow2\left(\sqrt{x^2-x+1}-1\right)=2x+\sqrt{x+1}-1\)

\(\Leftrightarrow\dfrac{2x\left(x-1\right)}{\sqrt{x^2-x+1}+1}=2x+\dfrac{x}{\sqrt{x+1}+1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2x-2}{\sqrt{x^2-x+1}}=2+\dfrac{1}{\sqrt{x+1}+1}\left(1\right)\end{matrix}\right.\)

Phương trình (1) 

<=> \(\dfrac{2\left(x+1\right)}{\sqrt{x^2-x+1}}=2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{4}{\sqrt{x^2-x+1}}\)

Xét vế trái : \(\dfrac{2\left(x+1\right)}{\sqrt{x^2-x+1}}=\sqrt{\dfrac{4x^2+4x+1}{x^2-x+1}}=\sqrt{\dfrac{5x^2-5x+5-x^2+9x-4}{x^2-x+1}}\)

\(=\sqrt{5-\dfrac{x^2-9x+4}{x^2-x+1}}< \sqrt{5}\) (2) 

Lại có \(2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{4}{\sqrt{x^2-x+1}}\)

\(=2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}\)

\(\ge2+\dfrac{\left(1+1+1+1+1\right)^2}{\sqrt{x+1}+1+4\sqrt{x^2-x+1}}=2+\dfrac{25}{\sqrt{x+1}+1+4\sqrt{x^2-x+1}}\)

Dấu "=" khi \(\dfrac{1}{\sqrt{x+1}+1}=\dfrac{1}{\sqrt{x^2-x+1}}\Leftrightarrow\left[{}\begin{matrix}x\approx3,498374325\\x\approx-0,7385661113\end{matrix}\right.\)

Khi đó \(VP\ge3,6\) (3) 

Từ (3) và (2) => (1) vô nghiệm 

Vậy x = 0 => y = 1

Với 2x = y - 1 kết hợp điều kiện 2x(1 - y) \(\ge0\)

ta được x = 0 ; y = 1 

Vậy (x ; y) = (0;1)