K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

\(\left(\frac{1}{\sqrt{625}}+\frac{1}{5}+1\right):\left(\frac{1}{25}-\frac{1}{\sqrt{25}}-1\right)\)

\(=\left(\frac{1}{25}+\frac{1}{5}+1\right):\left(\frac{1}{25}-\frac{1}{5}-1\right)\)

\(=\frac{31}{25}:\frac{-29}{25}\)

\(=\frac{-31}{29}\)

\(\left(\dfrac{1}{\sqrt{625}}+\dfrac{1}{5}+1\right):\left(\dfrac{1}{25}-\dfrac{1}{\sqrt{25}}-1\right)\)
\(=\left(\dfrac{1}{25}+\dfrac{1}{5}+1\right):\left(\dfrac{1}{25}-\dfrac{1}{5}-1\right)\)
\(=\left(\dfrac{1}{25}+\dfrac{5}{25}+\dfrac{25}{25}\right):\left(\dfrac{1}{25}-\dfrac{5}{25}-\dfrac{25}{25}\right)\)
\(=\dfrac{31}{25}:\left(-\dfrac{29}{25}\right)\)
\(=\dfrac{31}{25}.\left(-\dfrac{25}{29}\right)\)
\(=-\dfrac{31}{29}\)

19 tháng 2 2017

Lớp 6 làm gì học căn bậc . Mình làm cho bạn nếu lớp khác :

\(\left(\frac{1}{\sqrt{625}}+\frac{1}{5}+1\right):\left(\frac{1}{25}-\frac{1}{\sqrt{25}}-1\right)\)

\(=\left(\frac{1}{25}+\frac{1}{5}+1\right):\left(\frac{1}{25}-\frac{1}{5}-1\right)\)

\(=\frac{31}{25}:\frac{-29}{25}\)

\(=\frac{-31}{29}\)

19 tháng 2 2017

xl bạn đáng ra là mình làm lớp 7 mak nó thành ra lớp 6

10 tháng 2 2020

\(a,\left(\frac{1}{\sqrt{625}}+\frac{1}{5}+1\right):\left(\frac{1}{25}-\frac{1}{\sqrt{25}}-1\right)\)

\(=\left(\frac{1}{25}+\frac{1}{5}+1\right):\left(\frac{1}{25}-\frac{1}{5}-1\right)\)

\(=\frac{31}{25}:\left(-\frac{29}{25}\right)\)

\(=\frac{31}{25}.\frac{-25}{29}\)

\(=-\frac{31}{29}\)

\(b,\left[18\frac{1}{6}-\left(0,06:7\frac{1}{2}+3\frac{2}{5}.0,38\right)\right]:\left(19-2\frac{2}{3}.4\frac{3}{4}\right)\)

\(=\left[\frac{109}{6}-\left(\frac{3}{50}:\frac{15}{2}+\frac{17}{5}.\frac{19}{50}\right)\right]:\left(19-\frac{8}{3}.\frac{19}{4}\right)\)

\(=\left(\frac{109}{6}-\frac{13}{10}\right):\frac{19}{3}\)

\(=\frac{253}{15}.\frac{3}{19}\)

\(=\frac{253}{95}\)

Số to :v

15 tháng 8 2021

ai giúp với ạ :<

2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

1: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\dfrac{25-x-x+9-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-3x+59}\)

\(=\dfrac{-5\left(\sqrt{x}-3\right)}{-3x+59}\)

\(=\dfrac{5\sqrt{x}-15}{3x-59}\)

2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$

$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$

$\Leftrightarrow -\sqrt{x-1}=-17$

$\Leftrightarrow \sqrt{x-1}=17$

$\Leftrightarrow x-1=289$

$\Leftrightarrow x=290$

b. ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$

$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$

$\Leftrihgtarrow \sqrt{2x-1}=2$

$\Leftrightarrow x=2,5$ (tm)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm

2 tháng 7 2023

\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\\ =\dfrac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\dfrac{1}{\sqrt{2.3}\left(\sqrt{3}+\sqrt{2}\right)}+....+\dfrac{1}{\sqrt{24.25}\left(\sqrt{25}+\sqrt{24}\right)}\\ =\dfrac{\sqrt{2}-1}{\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{2}.\sqrt{3}}+...+\dfrac{\sqrt{25}-\sqrt{24}}{\sqrt{25}.\sqrt{24}}\\ =1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\\ =1-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)

\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\)

=1-1/5=4/5

30 tháng 10 2017

\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1} }=\frac{1}{\sqrt{n(n+1)}(\sqrt{n+1)+\sqrt{n}) } } =\frac{\sqrt{n+1}-\sqrt{n} }{\sqrt{n(n+1)} } =\frac{1}{\sqrt{n} }-\frac{1}{\sqrt{n+1} } \)

=>K=1-\( \frac{1}{5} \)=\(\frac{4}{5} \)