Cho tam giác DEF. Gọi M, N lần lượt là trung điểm của DE và DF.
a) Chứng minh: Tứ giác EMNF là hình thang.
b) Tính độ dài MN biết EF= 20cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEF có
M là trung điểm của DE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔDEF
Suy ra: MN//EF
hay EMNF là hình thang
a: Xét ΔDEF có
M là trung điểm của DE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔFED
a: EF=5cm
DM=2,5cm
b: Xét tứ giác DENF có
M là trung điểm của EF
M là trung điểm của DN
Do đó: DENF là hình bình hành
mà \(\widehat{EDF}=90^0\)
nên DENF là hình chữ nhật
c: Xét tứ giác FBEA có
FB//EA
FB=EA
Do đó: FBEA là hình bình hành
Suy ra: Hai đường chéo FE và BA cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của FE
nên M là trung điểm của BA
hay M,A,B thẳng hàng
a/ M, N là trung điểm của AB, AC ⇒ MN là đường trung bình của △ABC, MN // BC (1)
Vậy: MNCB là hình thang (đpcm)
==========
b/ Do MN là đường trung bình của △ABC
Vậy: \(MN=\dfrac{BC}{2}\Rightarrow BC=MN.2=3,5.2=7cm\)
==========
c/ Do E là trung điểm của BC \(\Rightarrow CE=\dfrac{BC}{2}\)
- Mà \(MN=\dfrac{BC}{2}\Rightarrow MN=CE\left(2\right)\)
Từ (1) và (2). Vậy: MNCE là hình bình hành (đpcm)
a, Ta có: DH là đường cao trong tam giác cân DEF
⇒DH vừa là đường cao, vừa là đường trung tuyến trong tam giác cân DEF
⇒HE=HF
Ta có: HE=HF=EF/2=8/2=4 (cm)
Xét ΔDHE vuông tại H
Theo định lý Pi-ta-go, ta có:
DF²=DH²+HF²
⇒DH²=DF²-HF²
⇒DH²=5²-4²
⇒DH²=9
⇒DH=√9=3 (cm)
b, Xét ΔDME và ΔDNF có:
DM=DN (GT)
A là góc chung
DE=DF (GT)
⇒ ΔDME=ΔDNF (c.g.c)
⇒EM=FN (2 cạnh tương ứng)
DEM=DFN (2 góc tương ứng)
c, Ta có: E=F (GT)
và DEM=DFN (cmt)
⇒KEF=KFE
⇒ΔKEF cân tại K
⇒KE=KF
d, Ta có: DH⊥EF và HE=HF
⇒DH là đường trung trực của EF
mà KE=KF
⇒K là điểm thuộc đường trung trực DH
⇒D, K, H thẳng hàng