cho ad=bc chứng minh (a-b/c-d)2007=a2007-b2007/c2007-d2007 giải giúp mình với mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2c^2+b^2c^2\right)+\left(b^2d^2+a^2d^2\right)\)
\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Vậy \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
Câu trả lời hay nhất: a/
Đẳng thức <=> (ac)² + (ad)² + (bc)² + (bd)² = (ac)² + (ad)² + (bc)² + (bd) + 2ac.bd - 2ad.bc
<=> 2.ad.bc - 2.ad.bc = 0
<=> 0 = 0 ( đúng ) => đẳng thức đã cho đúng
b/
Đẳng thức <=> 2a² + 2b² + 2c² = 2ab + 2bc + 2ac
<=> a² - 2ab + b² + b² - 2bc + c² + c² - 2ac + a² = 0
<=> ( a - b)² + ( b - c)² + ( c - a)² = 0
<=> (a - b)² = 0 và (b - c)² = 0 và (c - a)² = 0
<=> a - b = 0 và b - c = 0 và c - a = 0
<=> a = b, b = c, c = a => a = b = c
(vì tổng 3 số hk âm = 0 khi mỗi số điều = 0)
c/ từ giả thuyết => a + b = -c,
ta có:
a³ + b³ + c³ -3abc = ( a + b)³ - 3ab( a + b) + c³ -3abc = -c³ + 3abc + c³ - 3abc = 0
( vì a³ + b³ = ( a + b)( a² - ab + b²) = (a + b)( (a + b)² - 3ab ) = ( a + b)³ - 3ab( a + b)
=> ĐPCM
Nguồn:Chúc bạn luôn vui vẻ
Bạn tự vẽ hình nha!
Tam giác AOC có: AO = CO nên tam giác AOC cân tại O
\(\Rightarrow OAC=\frac{180-O}{2}\)
Tam giác BOD có OB = OD nên tam giác BOD cân tại O
\(\Rightarrow OBD=\frac{180-O}{2}\)
\(\Rightarrow OAC=OBD\)Mà hai góc này ở vị trí đồng vị nên AC song song với BD.
Ta có : \(ad=bc=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=>\frac{a^{2007}}{c^{2007}}=\frac{b^{2007}}{d^{2007}}=\frac{\left(a+b\right)^{2007}}{\left(c+d\right)^{2007}}\)(1)
Áp dụng tính chất dãy tiir số bằng nhau ta có :
\(\frac{a^{2007}}{c^{2007}}=\frac{b^{2007}}{d^{2007}}=\frac{a^{2007}-b^{2007}}{c^{2007}-d^{2007}}\)(2)
Từ 1 và 2 suy ra đpcm
Hok tốt nha !