Bài 1 : Rút gọn biểu thức với giả thiết các biểu thức đều có nghĩa
a) A = \(4\sqrt{\frac{25x}{4}}-\frac{8}{3}\sqrt{\frac{9x}{4}}-\frac{4}{3x}\sqrt{\frac{9x^3}{54}}\left(x>0\right)\)
b) B = \(\frac{x}{2}+\frac{3}{4}\sqrt{1-4x+4x^2}-\frac{3}{2}\left(x\le\frac{1}{2}\right)\)
Bài 3 : Giải PT
a) \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
b) \(\sqrt{4x^2-9}=2\sqrt{2x+3}\)
c) \(3x-7\sqrt{x}+4=0\)
Bài 4 : Trục căn thức mẫu và rút gọn
a) \(\frac{9}{\sqrt{3}}\)
b) \(\frac{3}{\sqrt{5}-\sqrt{2}}\)
c) \(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
d) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
Vậy thoiiiii :))) Giúp em với mọi người :")))
B4
a) \(\frac{9}{\sqrt{3}}=\frac{9\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}\)
b)\(\frac{3}{\sqrt{5}-\sqrt{2}}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}=\sqrt{5}+\sqrt{2}\)
c)\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{\left(\sqrt{2}+1\right)^2}{1}=\left(\sqrt{2}+1\right)^2\)
d)\(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)
B3
a)\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\) \(đk:x\ge1\)
\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\sqrt{x-1}\cdot\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)
\(\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\sqrt{x-1}=17\)
\(\left[{}\begin{matrix}x-1=289\left(tm\right)\\x-1=-289\left(ktm\right)\end{matrix}\right.\)
\(x=290\left(tm\right)\)