K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

  • Nếu \(k\)= 0 thì hiển nhiên  ta có : \(\frac{ak^2+bk+c}{xk^2+yk+z}=\frac{c}{z}\). Giá trị tỉ số ko phụ thuộc vào \(k\)
  • Nếu \(k\ne0\), áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}=\frac{ak^2+bk+c}{xk^2+yk+z}\)

Ta thấy tỉ số luôn bằng giá trị bang đầu là: \(\frac{a}{x};\frac{b}{y};\frac{c}{z}\) . Hay ko phụ thuộc vào giá trị \(k\)

Hok tốt

23 tháng 7 2019

Ta có : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có  : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}=\frac{ak^2+bk+c}{xk^2+yk+z}\)

hay \(\frac{a}{b}=\frac{ak^2+bk+c}{xk^2+yk+z}\)

Vậy tỉ số \(\frac{ak^2+bk+c}{xk^2+yk+z}\) ko phụ thuộc vào giá trị của k 

23 tháng 10 2019

Câu hỏi của Oo_ Love is a beautiful pain _oO - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo link trên nhé!

24 tháng 10 2019

thank ban nha

2 tháng 12 2017

Bài này có trong câu hỏi tương tự và đã được olm.vn bình chọn nhé 

Mình chỉ làm lại cho bạn dễ coi thôi 

Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)

Khi đó \(a=kx;b=yk;c=zk\)

Suy ra \(\frac{ak^2+bk+c}{xk^2+yk+z}=\frac{xk.k^2+yk.k+zk}{x.k^2+yk+z}=\frac{xk^3+yk^2+zk}{xk^2+yk+z}=\frac{k.\left(xk^2+yk+z\right)}{xk^2+yk+z}=k\)

Do đó giá trị biểu thức không phụ thuộc vào k 

Vậy..

2 tháng 12 2017

 bạn viết sai đề rùi

21 tháng 2 2019

\(\text{Đặt }\frac{m}{a}=\frac{n}{b}=\frac{k}{c}=l,\text{ ta có: }\)

\(m=al,n=bl,k=cl\)

\(A=\frac{alx+bly+clz}{ax+by+cz}=\frac{l\left(ax+by+cz\right)}{ax+by+cz}=l\)

Vậy..

\(2,2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\Leftrightarrow\frac{x+y}{5}=\frac{y+z}{2},\frac{y+z}{3}=\frac{x+z}{5}\)

\(\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{y+z-x-z}{6-10}=\frac{y-x}{-4}=\frac{x-y}{4}=\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)

6 tháng 12 2017

Đặt \(\dfrac{a}{x}\)=\(\dfrac{b}{y}\)=\(\dfrac{c}{z}\)=m

\(\Rightarrow\)a=xm ; b=ym ; c=zm

Thay a=xm ; b=ym ; c=zm vào \(\dfrac{ak^2+bk+c}{xk^2+yk+z}\)ta có:

\(\dfrac{ak^2+bk+c}{xk^2+yk+z}\)=\(\dfrac{xmk^2+ymk+zm}{xk^2+yk+z}\)=\(\dfrac{m\left(xk^2+yk+z\right)}{xk^2+yk+z}\)=m

\(\Rightarrow\)đpcm

6 tháng 12 2017

tick cho mk ná

5 tháng 8 2016

Ta có \(\frac{A}{a}\) = \(\frac{B}{b}\) = \(\frac{C}{c}\) = k => A= ka; B= kb; C= kc

Vậy Q= \(\frac{kax+kby+kc}{ax+by+c}\) = \(\frac{k\left(ax+by+c\right)}{ax+by+c}\) = k

Giá trị này của Q không phụ thuộc vào x và y

11 tháng 8 2017

Yêu mình nha

23 tháng 11 2016

Ta có: x,y,z \(\in\)Z ,nên

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow A>1\)

\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)

\(\Rightarrow B>1\)

Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1

Do đó A < 2.Vậy 1 < A < 2

=> A có giá trị là 1 số không thuộc tập hợp số nguyên

Do giá trị của M không phụ thuộc vào x ; y thì M luôn bằng 1 giá trị với mọi x , y  ( Trừ trường hợp \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)sẽ khiến M không tồn tại )

Đặt M=nM=n

Với \(\hept{\begin{cases}x=0\\y=1\end{cases}}\Rightarrow n=\frac{a.0+b.1}{c.0+d.1}=\frac{b}{d}\)

Với \(\hept{\begin{cases}x=1\\y=0\end{cases}\Rightarrow}n=\frac{a.1+b.0}{c.1+d.0}=\frac{a}{c}\)

\Rightarrow\frac{a}{c}=\frac{b}{d}⇒ca​=db​

\Leftrightarrow ad=bc⇔ad=bc

Vậy ...