so sánh phép tính sau :
sin 32° , sin 41 °, cos 52°, sin 21°, cos 73°, tan 13°
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\cot51^0=\tan39^0\)
\(\cot79^015'=\tan10^045'\)
Do đó: \(\cot79^015'< \tan13^0< \tan28^0< \cot51^0< \tan47^0\)
2) \(\cos62^0=\sin28^0\)
\(\cos63^041'=\sin26^019'\)
\(\cos87^0=\sin3^0\)
Do đó: \(\cos87^0< \cos63^041'< \cos62^0< \sin47^0< \sin50^0\)
cos20,sin65,cos28,sin40,cos88
Giải thích các bước giải:
đổi sin40=cos(90-40)=cos50
sin65=cos(90-65)=cos25
1.
ĐKXĐ: \(x\ne k\pi\)
\(\Leftrightarrow\left(2cos2x-1\right)\left(sinx-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{1}{2}\\sinx=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
2. Bạn kiểm tra lại đề, pt này về cơ bản ko giải được.
3.
ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)
\(\dfrac{3\left(sinx+\dfrac{sinx}{cosx}\right)}{\dfrac{sinx}{cosx}-sinx}-2cosx=2\)
\(\Leftrightarrow\dfrac{3\left(1+cosx\right)}{1-cosx}+2\left(1+cosx\right)=0\)
\(\Leftrightarrow\left(1+cosx\right)\left(\dfrac{3}{1-cosx}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(loại\right)\\cosx=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
a,
Đổi `tan 12^o = cot 78^o ; tan 28^o = cot 62^o ; tan 58^o = cot 32^o`
Vì `32^o<61^o<62^o<78^o<79^15'`
`->cot 32^o>cot 61^o>cot 62^o > cot 78^o > cot 79^o15'`
`->tan 58^o>cot 61^o > tan 28^o > tan 12^o > cot 79^o15'`
b,
Đổi `sin 56^o = cos 34^o ; sin 74^o=cos 16^o`
Vì `16^o<24^o<63^o41'<67^o<85 ^o`
`->cos 16^o>cos 34^o>cos 63^o41'>cos 67^o>cos 85 ^o`
`->sin 74^o>sin 56^o>cos 63^o41'>cos 67^o>cos 85 ^o`