K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) \(\cot51^0=\tan39^0\)

\(\cot79^015'=\tan10^045'\)

Do đó: \(\cot79^015'< \tan13^0< \tan28^0< \cot51^0< \tan47^0\)

2) \(\cos62^0=\sin28^0\)

\(\cos63^041'=\sin26^019'\)

\(\cos87^0=\sin3^0\)

Do đó: \(\cos87^0< \cos63^041'< \cos62^0< \sin47^0< \sin50^0\)

15 tháng 7 2021

cos20,sin65,cos28,sin40,cos88 

Giải thích các bước giải:

 đổi sin40=cos(90-40)=cos50

sin65=cos(90-65)=cos25

NV
28 tháng 6 2021

1. 

ĐKXĐ: \(x\ne k\pi\)

\(\Leftrightarrow\left(2cos2x-1\right)\left(sinx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{1}{2}\\sinx=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

NV
28 tháng 6 2021

2. Bạn kiểm tra lại đề, pt này về cơ bản ko giải được.

3.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{3\left(sinx+\dfrac{sinx}{cosx}\right)}{\dfrac{sinx}{cosx}-sinx}-2cosx=2\)

\(\Leftrightarrow\dfrac{3\left(1+cosx\right)}{1-cosx}+2\left(1+cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(\dfrac{3}{1-cosx}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(loại\right)\\cosx=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

26 tháng 7 2021

a,

Đổi `tan 12^o = cot 78^o ; tan 28^o = cot 62^o ; tan 58^o = cot 32^o`

Vì `32^o<61^o<62^o<78^o<79^15'`

`->cot 32^o>cot 61^o>cot 62^o > cot 78^o > cot 79^o15'`

`->tan 58^o>cot 61^o > tan 28^o > tan 12^o > cot 79^o15'`

b,

Đổi `sin 56^o = cos 34^o ; sin 74^o=cos 16^o`

Vì `16^o<24^o<63^o41'<67^o<85 ^o`

`->cos 16^o>cos 34^o>cos 63^o41'>cos 67^o>cos 85 ^o`

`->sin 74^o>sin 56^o>cos 63^o41'>cos 67^o>cos 85 ^o`