K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có 

\(\left(2n-1\right)^3-2n-1\)

\(=2n.\left(2n-2\right).\left(2n-2\right)\)

\(=8n.\left(n-1\right)^2⋮8\)

21 tháng 7 2019

\(\left(2n+1\right)^3-(2n+1)\)

\(=\left(2n-2\right)\left(2n-2\right)2n\)

\(=8n\left(n-1\right)^2⋮8\)

14 tháng 8 2015

a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp

 => m(m+1)(m-1) chia hết cho 3 và 2

Mà (3,2) = 1

=> m(m+1)(m-1) chia hết cho 6

=> m^3 - m  chia hết cho 6  V m thuộc Z

b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8

=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z

Tick nha pham thuy trang

 

14 tháng 8 2015

a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6

mk chỉ biết có thế thôi

19 tháng 7 2018

a)  \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)\(⋮\)\(5\)

b)  \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)

\(=3n-2n^2-3+2n-n^2-5n\)

\(=-3n^2-3\)

\(=-3\left(n^2+1\right)\)\(⋮\)\(3\)

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

2 tháng 10 2021

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

9 tháng 9 2018

Dễ mà.

       \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\) 

\(-5n⋮5\forall n\in Z\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\)

Chúc bạn học tốt.

17 tháng 9 2018

Ta có:

\(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\left(2n-1+1\right)\left(2n-1-1\right)\)

\(=\left(2n-1\right).2n.\left(2n-2\right)\)

\(=4n\left(2n-1\right)\left(n-1\right)\)

\(4n\left(2n-1\right)\left(n-1\right)\) chia hết cho 4 ( Do chứa thừa số 4 )

Đồng thời \(4n\left(2n-1\right)\left(n-1\right)\) chia hết cho 2 ( Do n(n-1) là tích của hai số tự nhiên liên tiếp

\(\Rightarrow4n\left(2n-1\right)\left(n-1\right)\) chia hết cho 8

29 tháng 7 2016

(2n-1)^3-(2n-1)

=(2n-1)((2n-1)2-1)

=(2n-1)(2n-1+1)(2n-1-1)

=2n(2n-1)(2n-2)

=4n(2n-1)(n-1)

=> 4n(2n-1)(n-1) chia hết cho 4 (1)

mà (2n-1)(n-1)=(n+n-1)(n-1)

=> (2n1)(n-1) chia hết cho 2 (2)

Từ (1) và (2), ta suy ra (2n-1)^3 - (2n-1) chia hết cho 8

19 tháng 3 2016

(2n-1)^3-(2n-1)

=(2n-1)((2n-1)2-1)

=(2n-1)(2n-1+1)(2n-1-1)

=2n(2n-1)(2n-2)

=4n(2n-1)(n-1)

=> 4n(2n-1)(n-1) chia hết cho 4 (1)

mà (2n-1)(n-1)=(n+n-1)(n-1)

=> (2n1)(n-1) chia hết cho 2 (2)

Từ (1) và (2), ta suy ra (2n-1)^3 - (2n-1) chia hết cho 8

16 tháng 9 2018
 (2n-1)^3-(2n-1)= (2n-1)[(2n-1)^2-1]= (2n-1).(2n-2).2n=4n(n-1)(2n-1). =4(2n-1)n(n-1)
Vì n(n-1) là tích 2 số nguyên liên tiếp => n(n-1) chia hết cho 2. 
=>4n(n-1)(2n-1) chia hết cho 8.