1. Viết các đa thức sau dưới dạng bình phương của một tổng, tích:
a. 27x3 + 8
b. 8x3 - y3
c. x2 + 4xy + 4y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x2 - 6x + 9=(x-3)2
2. 25 + 10x + x2=(x+5)2
3. \(\dfrac{1}{4}a^2+2ab^2+4b^4=\left(\dfrac{1}{2}a+2b^2\right)^2\)
4.\(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}-y^4\right)^2\)
5.x3 + 8y3=(x+8y)(x2-8xy+64y2)
6.8y3 -125=(2y-5)(4y2+10y+25)
7.a6-b3=(a2-b)(a4+a2b+b2)
8 x2 - 10x + 25=(x-2)2
1) \(x^2-6x+9=\left(x-3\right)^2\)
2) \(25+10x+x^2=\left(5+x\right)^2\)
3) \(\dfrac{1}{4}a^2+2ab+4b^4=\left(\dfrac{1}{2}a+2b^2\right)^2\)
4) \(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}-y^4\right)^2\)
5) \(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
6) \(8y^3-125=\left(2y-5\right)\left(4y^2+10y+25\right)\)
7) \(a^6-b^3=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
8) \(x^2-10x+25=\left(x-5\right)^2\)
9) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
\(a,=8\left(x^3-125\right)=8\left(x-5\right)\left(x^2+5x+25\right)\\ b,=\left(0,1+4x\right)\left(0,01-0,4x+16x^2\right)\\ c,=\left(x+\dfrac{1}{5}y\right)\left(x^2-\dfrac{1}{5}xy+\dfrac{1}{25}y^2\right)\\ d,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ e,=\left(x-1+3\right)\left[\left(x-1\right)^2-3\left(x-1\right)+9\right]\\ =\left(x+2\right)\left(x^2-2x+1-3x+3+9\right)\\ =\left(x+2\right)\left(x^2-5x+13\right)\\ f,=\left(\dfrac{x^2}{2}-y^2\right)\left(\dfrac{x^4}{4}+\dfrac{x^2y^2}{2}+y^4\right)\)
1, \(a^6+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
2, \(x^2-10x+25=\left(x-5\right)^2\)
3, \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
4, \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
1) \(a^6+b^3=\left(a^2\right)^3+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
2) \(x^2-10x+25=\left(x-5\right)^2\)
3) \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{3}\right)^3=\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2x}{3}+\dfrac{1}{4}\right)\)
4) \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
`a)x^2-2x+2+4y^2+4y`
`=x^2-2x+1+4y^2+4y+1`
`=(x-1)^2+(2y+1)^2`
`b)4x^2+y^2+12x+4y+13`
`=4x^2+12x+9+y^2+4y+4`
`=(2x+3)^2+(y+2)^2`
`c)x^2+17+4y^2+8x+4y`
`=x^2+8x+16+4y^2+4y+1`
`=(x+4)^2+(2y+1)^2`
`d)4x^2-12xy+y^2-4y+13`
`=4x^2-12x+9+y^2-4y+4`
`=(2x-3)^2+(y-2)^2`
a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)
b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)
c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)
d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)
a: \(1-\dfrac{x^3}{8}=\left(1-\dfrac{1}{2}x\right)\left(1+\dfrac{1}{2}x+\dfrac{1}{4}x^2\right)\)
b: \(27x^3+1=\left(3x+1\right)\left(9x^2-3x+1\right)\)
c: \(64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
\(1,\\ a,=\left(x+2\right)\left(x^2-2x+4\right)\\ b,=\left(x-4\right)\left(x^2+8x+16\right)\\ c,=\left(3x+1\right)\left(9x^2-3x+1\right)\\ d,=\left(4m-3\right)\left(16m^2+12m+9\right)\\ 2,\\ a,=x^3+125\\ b,=1-x^3\\ c,=y^3+27t^3\)
a)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
b)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
c)=\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
d)
=\(\left(4m-3\right)\left(16m^2+12m+9\right)\)
a) \(27x^3+8^3\)
\(=\left(3x\right)^3+2^3\)
\(=\left(3x+2\right)\left[\left(3x\right)^2+6x+2^2\right]\)
\(=\left(3x+2\right)\left(9x^2-6x+4\right)\)
b) \(8x^3-y^3\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
c) \(x^2+4xy+4y^2\)
\(=\left(x+2y\right)^2\)
\(27x^3+8\)
\(=\left(3x\right)^3+2^3\)
\(=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(8x^3-y^3\)
\(=\left(2x\right)^3-y^3\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(x^2+4xy+4y^2\)
\(=x^2+2.x.2y+\left(2y\right)^2\)
\(=\left(x+2y\right)^2\)
_Minh ngụy_