Cho tam giác ABC có P là giao điểm ba đường phân giác. Đường thẳng qua P vuông góc với CP cắt CA,CB tại M,N
a, CMR: tg AMP ~ tg APB
Giúp e vs ạ >.<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAN vuông tại A và ΔCMN vuông tại M có
CN chung
CA=CM
=>ΔCAN=ΔCMN
=>góc ACN=góc MCN
=>CN là phân giác của góc ACM
b: AN=NM
NM<NB
=>AN<NB
c: Xét ΔCME vuông tại M và ΔCAB vuông tại A có
CM=CA
góc C chung
=>ΔCME=ΔCAB
=>CE=CB
=>ΔCEB cân tại C
mà CN là phân giác
nên CN vuông góc EB
Cho P là giao điểm của ba đường phân giác trong của tam giác ABC. Đường thẳng qua P và vuông góc với CP cắt các tia CA, CB tại M, N. Chứng minh rằng:
a) Điểm M nằm giữa hai điểm C và A, điểm N nằm giữa hai điểm C và B.
b)
c) AP2.BC+BP2.AC+CP2.AB=AB.AC.BC
phần b đây các bạn
a ) Ta có
^AMP =^ PNB = ^APB ( cùng bằng 90 độ + ^C/2 )
ΔAMP ~ ΔAPB ( g.g )