Bài 1:
a) \(A=\frac{4^5.9-2.6^9}{2^{10}.3^8+6^8.20}\)
b) \(B=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
Bài 2: Tìm x biết:
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)
Bài 3: Tìm các số: a1, a2, a3,..., a9 biết:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)và \(a_1+a_2+a_3+...+a_9=90\)
Cứu với!!! ╥_╥
Bài 2
| x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | ( -3,2) + \(\frac{2}{5}\)|
=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | -2,8|
=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= -2,8
=> | x - \(\frac{1}{3}\)| = -2,8 - \(\frac{4}{5}\)
=> | x - \(\frac{1}{3}\)| = - 3,6
=> x - \(\frac{1}{3}\)= -3,6
=> x = -3,6 + \(\frac{1}{3}\)
=> x = \(\frac{-49}{15}\)
Bài 3 :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)
\(=\frac{\left[a_1+a_2+...+a_9\right]-\left[1+2+...+9\right]}{9+8+...+1}=\frac{90-45}{45}=1\)
Ta có : \(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)
Tương tự : \(a_1=a_2=....=a_9=10\)