K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 2 2018

Lời giải:

Nếu $p^2+pq+q^2$ là lũy thừa cơ số $3$, ta viết dưới dạng phương trình:

\(p^2+pq+q^2=3^t\) với $t$ là số tự nhiên. Vì \(p,q\in\mathbb{P}\Rightarrow t>2\)

Ta có:

\(3^t=p^2+pq+q^2=(p-q)^2+3pq\)

\(\Rightarrow (p-q)^2=3^t-3pq\vdots 3\) \(\Rightarrow p-q\vdots 3\). Do đó $p,q$ có cùng số dư khi chia cho $3$

TH1: \(p\equiv q\equiv 0\pmod 3\Rightarrow p,q\vdots 3\Rightarrow p=q=3\)

Thử lại có: \(3^t=27\Leftrightarrow t=3\) (thỏa mãn)

TH2: \(p\equiv q\equiv 1\pmod 3\). Đặt \(p=3k+1, q=3m+1\)

\(3^t=p^2+pq+q^2=(3k+1)^2+(3k+1)(3m+1)+(3m+1)^2\)

\(\Leftrightarrow 3^t=9(k^2+m^2+m+k+km)+3\) chia hết cho $3$ mà không chia hết cho $9$ , điều này vô lý vì \(t>2\Rightarrow 3^t\vdots 9\)

TH3: \(p\equiv q\equiv 2\pmod 3\Rightarrow p=3k+2, q=3m+2\)

\(3^t=p^2+pq+q^2=(3k+2)^2+(3k+2)(3m+2)+(3m+2)^2\)

\(\Leftrightarrow 3^t=9(k^2+m^2+2m+2k+km+1)+3\) chia hết cho $3$ mà không chia hết cho $9$, điều này vô lý vì với $t>2$ thì $3^t$ chia hết cho $9$

Do đó \(p=q=3\)

4 tháng 2 2020

Dễ thấy pq+7 là số lẻ \(\Rightarrow\)pq chẵn\(\Rightarrow\)p=2 hoặc q=2

th1: p=2\(\Rightarrow\)q=3,7

thử lại thấy chỉ có q=3 đúng.

th2: q=2

neu p=2 thi 5p+q khong phai so nguyen to

neu p=3 thi ca hai thoa man

neu p>3 thi p co dang 3k+1;3k+2

(lam tiep...)