Phân tích đa thức sau thành nhân tử :
\(x^3+\frac{3}{2}x^2+\frac{3}{2}x+\frac{1}{8}\)
P/s : Giúp tui >.<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
pt <=> (x/2000 - 1) + (x+1/2001 - 1) + (x+2/2002 - 1) + (x+3/2003 - 1) + (x+4/2004 - 1 ) = 0
<=> x-2000/2000 + x-2000/2001 + x-2000/2002 + x-2000/2003 + x-2000/2004 = 0
<=> (x-2000).(1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004) = 0
<=> x-2000=0 ( vì 1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004 > 0 )
<=> x=2000
Tk mk nha
1.
a, = (2x-1)^2-2.(2x-1)+1-4
= (2x-1-1)^2-4
= (2x-2)^2-4
= (2x-2-2).(2x-2+2)
= 2x.(2x-4)
b, = [x.(x+3)].[(x+1).(x+2)]
= (x^2+3x).(x^2+3x+1)-8
= (x^2+3x+1)^2-1-8
= (x^2+3x+1)^2-9
= (x^2+3x+1-3).(x^2+3x+1+3)
= (x^2+3x-2).(x^2+3x+4)
= ((x+1).(x+3).(x^2+3x-2)
Tk mk nha
\(x^2-\frac{5}{3}x-\frac{2}{3}\)
\(=x^2-2x+\frac{1}{3}x-\frac{2}{3}\)
\(=x\left(x-2\right)+\frac{1}{3}\left(x-2\right)\)
\(=\left(x-2\right)\left(x+\frac{1}{3}\right)\)
Để x;y;z ra ngoài làm thừa số chung rồi quất hết phần còn lại vào ngoặc thì thành 2 nhân tử thôi bạn, kiểu như phân phối ý.
\(\frac{2}{3}x-\frac{1}{9}x^2-1\)
\(=-\left(\frac{1}{9}x^2-\frac{2}{3}x+1\right)\)
\(=-\left[\left(\frac{1}{3}x\right)^2-2\cdot\frac{1}{3}x\cdot1+1^2\right]\)
\(=-\left(\frac{1}{3}x-1\right)^2\)
(x^2+x)^2+3(x^2+x)+2
đặt x^2+x=t
suy ra t^2+3t+2
=t^2+t+2t+2
=t(T+1)+2(T+1)
=(T+1)(t+2)
=(x^2+x+1)(x^2+x+2)
(x+1)(x+2)(x+3)(x+4)-8
=(x+1)(x+4)(x+2)(x+3)-8
=(x^2+4x+x+4)(x^2+3x+2x+6)-8
=(x^2+5x+4)(x^2+5x+6)-8
đặt x^2+5x=t
suy ra (T+4)(t+6)-8
=t^2+6t+4t+25-8
=t^2+10t+16
=t^2+2t+8t+16
=t(T+2)+8(t+2)
=(T+2)(t+8)
=(x^2+5x+2)(x^2+5x+8)
a, \(x^4+2013x^2+2012x+2013\)
\(=x^4+2013x^2-x+2013x+2013\)
\(=\left(x^4-x\right)+\left(2013x^2+2013x+2013\right)\)
\(=x\left(x^3-1\right)+2013\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2013\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left\{x\left(x-1\right)+2013\right\}\)
\(=\left(x^2+x+1\right)\left(x^2-x+2013\right)\)
\(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}=\left(x+\frac{1}{2}\right)^3\)
Bạn ghi sai đề nha
Hok tốt
\(x^3+\frac{3}{2}x^2+\frac{3}{2}x+\frac{1}{8}\)
\(=\left(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\right)+\frac{3}{2}x-\frac{3}{4}x\)
\(=\left(x+\frac{1}{2}\right)^3+\frac{3}{4}x\)
\(=\left(x+\frac{1}{2}\right)^3+\left(\sqrt[3]{\frac{3}{4}x}\right)^3\)
\(=\left(x+\frac{1}{2}+\sqrt[3]{\frac{3}{4}x}\right)\left[\left(x+\frac{1}{2}\right)^2-\left(x+\frac{1}{2}\right)\left(\sqrt[3]{\frac{3}{4}}\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2\right]\)