Giá trị của x lớn nhất thỏa mãn:
(x-1)x+1-(x-1)x+11=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 dễ bn tự làm nhé
câu 2 nhận xét (x-2)^2 >=0
=> 15-(x2)^2 >= 15
dấu = xảy ra khi và chỉ khi
x-2 = 0
=> x= 2
câu 3 x-5 <0
=> x < 5 (1)
3-x <0
=> x>3 (2)
từ (1) và (2) => 3< x< 5
=> x= 4
câu 1: x=1
câu 2: vì \(^{\left(x-2\right)^2}\)\(\ge\)0
=> 15-\(\left(x-2\right)^2\)\(\le\)0
Dấu "=" xảy ra <=> x-2=0
<=> x=2
Câu 3: x-5 < 0 => x<5
và 3-x >0 =>x>3
=> 3<x<5
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
1) 7-x3-x2-x=7-x(x2-x-1) vì x(x2-x-1) phải bé hơn 7 nên Giá trị lớn nhất của biểu thức B là 7
2) (x-2)(2x+14)=0 ta đc x-2=0 và 2x+14=0
*Xét trường hớp 1: x-2=0 =>x=2
*Xét trường hợp 2: 2x+14=0 =>2x=-14 =>x= -7
Vậy x={2;-7}
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Ta co :
(x-7)7+1-(x-7)x+11=0
(x-7)x+1-(x-7)x+1.x10=0
(x-7)x+1.1-x10=0
Vi x phai la so nguyen to nen x=7