\(\text{Cho tam giác ABC ( AB = AC), AM là phân giác của góc BAC ( M thuộc BC) a) CM: M là trung điểm của BC. b) Trên tia đối của tia AB lấy E, trên tia đối của tia AC lấy điểm F sao cho AE = AF. CM: tam giác BCE = tam giác CBF c) CM: ME = MF d) Gọi N là trung điểm EF. CM: A, M, N thẳng hàng}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì AM là phân giác của góc BAC
nên góc BAM = CAM
Xét ΔBAM và ΔCAM có:
AB = AC ( giả thiết )
Góc BAM = CAM ( chứng minh trên )
AM cạnh chung.
=> Δ BAM = ΔCAM ( c.g.c )
=> BM = CM ( 2 cạnh tương ứng )
mà M nằm giữa B và C
Do đó M là trung điểm của BC → ĐPCM.
b) Ta có: AB + BE = AE
AC + CF = AF
mà AB = AC ( đề bài ); AE = AF (đề bài)
=> BE = CF.
Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )
Lại có: Góc ABC + CBE = 180 độ (kề bù)
Góc ACB + BCF = 180 độ (kề bù)
=> ABC + CBE = ACB + BCF
=> Góc CBE = BCF.
Xét ΔBCE và ΔCBF có:
BE = CF ( chứng minh trên)
Góc CBE = BCF ( chứng minh trên)
BC cạnh chung ( theo hình vẽ)
=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.
c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM
Xét ΔMBE và ΔMCF có:
MB = MC ( chứng minh ở câu a )
Góc EBM = FCM ( chứng minh trên)
BE = FC ( chứng minh ở câu b)
=> ΔMBE = ΔMCF ( c.g.c )
=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.
d) Xét ΔEMN và ΔFMN có:
EM = FM ( chứng minh ở câu c )
EN = FN ( N là trung điểm EF )
MN chung.
=> ΔEMN = ΔFMN.
=> Góc ENM = FNM (2 góc tương ứng)
Suy ra MN là tia phân giác của góc ENF (1)
Có: góc BAM = CAM
Suy ra AM là tia phân giác của góc BAC (2)
Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.
Do đó A, M, N thẳng hàng → ĐPCM.
Chúc bạn học giỏi nguyễn minh trang!
- Xét tg ABC và AFE có :
AB=AF(gt)
AC=AE(gt)
\(\widehat{FAE}=\widehat{BAC}\left(đđ\right)\)
=> Tg ABC=AFE(c.g.c)
=> EF=BC
Mà : \(BM=\frac{BC}{2}\left(gt\right)\)
\(FN=\frac{FE}{2}\left(gt\right)\)
=> BM=FN
- Xét tg ABM và AFN có :
AB=AF(gt)
BM=FN(cmt)
\(\widehat{B}=\widehat{F}\)(do tg ABC=AFN)
=> Tg ABM=AFN(c.g.c)
#H
b1 :
tự cm tam giác ABC vuông
=> góc ABC + góc ACB = 90 (đl)
BI là pg của góc ABC => góc IBC = góc ABC : 2
CI là pg của góc ACB => góc ICB = góc ACB : 2
=> góc IBC + góc ICB = (góc ABC + góc ACB) : 2
=> góc IBC + góc ICB = 45
xét tam giác IBC => góc IBC + góc ICB + góc BIC = 180
=> góc BIC = 135
a: góc A=180-60=120 dộ
=>góc EAB=60 độ=góc BAI
Xet ΔEAB và ΔIAB có
góc EAB=góc IAB
AB chung
EA=IA
=>ΔEAB=ΔIAB
=>BE=BI
=>AB là trung trực của IE
Chứng minh tương tự, ta được: AC là trung trực của IF
b: góc EAB=góc FAC=60 độ
=>góc EAB+góc BAI=góc FAC+góc IAC
=>góc EAI=góc FAI
Xét ΔEAI và ΔFAI có
AI chung
góc EAI=góc FAI
AE=AF
=>ΔEAI=ΔFAI
=>EI=FI
=>ΔIFE cân tại I
=>góc EIF=2*góc AIE
ΔEAI cân tại A
=>góc AIE=(180-60-60)/2=30 độ
=>góc EIF=60 độ
=>ΔIEF đều
c: góc AIE=góc AIF
=>AI là phân giác của góc EIF
mà ΔEIF đều
nên AI vuông góc EF
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác và cũng là đường cao
b: Ta có: AB=CD
mà AB=AC
nên CD=AC
=>ΔACD cân tại C
mà CM là đường cao
nên M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
a) Vì AM là phân giác của góc BAC
nên góc BAM = CAM
Xét ΔBAM và ΔCAM có:
AB = AC ( giả thiết )
Góc BAM = CAM ( chứng minh trên )
AM cạnh chung.
=> Δ BAM = ΔCAM ( c.g.c )
=> BM = CM ( 2 cạnh tương ứng )
mà M nằm giữa B và C
Do đó M là trung điểm của BC → ĐPCM.
b) Ta có: AB + BE = AE
AC + CF = AF
mà AB = AC ( đề bài ); AE = AF (đề bài)
=> BE = CF.
Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )
Lại có: Góc ABC + CBE = 180 độ (kề bù)
Góc ACB + BCF = 180 độ (kề bù)
=> ABC + CBE = ACB + BCF
=> Góc CBE = BCF.
Xét ΔBCE và ΔCBF có:
BE = CF ( chứng minh trên)
Góc CBE = BCF ( chứng minh trên)
BC cạnh chung ( theo hình vẽ)
=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.
c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM
Xét ΔMBE và ΔMCF có:
MB = MC ( chứng minh ở câu a )
Góc EBM = FCM ( chứng minh trên)
BE = FC ( chứng minh ở câu b)
=> ΔMBE = ΔMCF ( c.g.c )
=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.
d) Xét ΔEMN và ΔFMN có:
EM = FM ( chứng minh ở câu c )
EN = FN ( N là trung điểm EF )
MN chung.
=> ΔEMN = ΔFMN.
=> Góc ENM = FNM (2 góc tương ứng)
Suy ra MN là tia phân giác của góc ENF (1)
Có: góc BAM = CAM
Suy ra AM là tia phân giác của góc BAC (2)
Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.
Do đó A, M, N thẳng hàng → ĐPCM.
CM:a) Xét t/giác ABM và ACM
có: AB = AC (gt)
\(\widehat{BAM}=\widehat{CAM}\) (gt)
AM : chung
=> t/giác ABM = t/giác ACM (c.g.c)
=> BM = CM (2 cạnh t/ứng)
=> M là trung điểm của BC
b) Ta có: AE + AC = EC
AF + AB = FB
mà AE = AF (gt); AB = AC (gt)
=> EC = FB
Xét t/giác BCE và t/giác CBF
có: BC : chung
\(\widehat{BCE}=\widehat{FBC}\) (vì t/giác ABC cân)
EC = FB (cmt)
=> t/giác BCE = t/giác CBF (c.g.c)
c) Xét t/giác BEM và t/giác CFM
có: EB = FC (vì t/giác BCE = t/giác CBF)
\(\widehat{EBM}=\widehat{FCM}\) (vì t/giác BCE = t/giác CBF)
BM = CM (cm câu a)
=> t/giác BEM = t/giác CFM (c.g.c)
=> ME = MF (2 cạnh t/ứng)
d) Xét t/giác AEN và t/giác AFN
có: AE = AF (gt)
EN = FN (gt)
AN : chung
=> t/giác AEN = t/giác AFN (c.c.c)
=> \(\widehat{EAN}=\widehat{MAF}\) (2 góc t/ứng)
=> AN là tia p/giác của góc EAF => \(\widehat{EAN}=\widehat{MAF}=\frac{\widehat{EAF}}{2}\)
AM là tia p/giác của góc BAC => \(\widehat{BAM}=\widehat{CAM}=\frac{\widehat{BAC}}{2}\)
Mà \(\widehat{EAF}=\widehat{BAC}\) (đối đỉnh)
=> \(\widehat{EAN}=\widehat{NAF}=\widehat{BAM}=\widehat{MAC}\)
Ta có: \(\widehat{FAN}+\widehat{NAE}+\widehat{EAB}=180^0\)
hay \(\widehat{BAM}+\widehat{EAB}+\widehat{EAN}=180^0\)
=> A, M, N thẳng hàng