K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:
Xét 1 số $m$ là hợp số:

TH1: $m=4$ thì $(m-1)!+1$ không chia hết cho $m$

TH2: $m>4$, ta chứng minh được $(m-1)!\vdots m$.

Cách chứng minh: Câu hỏi của Phạm Phương Anh - Toán lớp 9 | Học trực tuyến

Do đó $(m-1)!+1$ không thể chia hết cho $m$ vì $(1,m)=1$

Tóm lại, với $m$ là hợp số thì $(m-1)!+1\not\vdots m$. Do đó nếu $(m-1)!+1\vdots m$ thì $m$ phải là số nguyên tố. (đpcm)

18 tháng 7 2019

tthsvtkvtmNguyễn Văn Đạt

11 tháng 9 2018

cái này là định lý đảo của định lý Wilson bạn nhé

11 tháng 9 2018

à mà mình nhầm hình như đề của bạn có vấn đề