Cho tam giác ABC nhọn, các đường cao AH, BK và CI
a, Cmr: AI. BH. CK = AB. BC. CA. cos A. cos B. cosC
b, Cho góc A = 600 và SABC = 160 cm2. Tính SAIK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Mình đã trình bày tại đây:
Câu hỏi của Tân Nhỏ - Toán lớp 9 | Học trực tuyến
b)
Ta thấy \(\sin A=\frac{BK}{AB}\) \(\Rightarrow BK=AB\sin A\)
\(\Rightarrow A_{ABC}=\frac{BK.AC}{2}=\frac{AB.\sin A.AC}{2}=\frac{\sin A.AB.AC}{2}\)
Hoàn toàn tương tự: \(S_{AIK}=\frac{\sin A.AI.AK}{2}\)
Do đó:
\(\frac{S_{AIK}}{S_{ABC}}=\frac{\sin A.AI.AK}{2}:\frac{\sin A.AB.AC}{2}=\frac{AI}{AC}.\frac{AK}{AB}\)
\(=\cos \widehat{IAC}.\cos \widehat{BAK}=\cos A.\cos A=\cos 60.\cos 60=\frac{1}{4}\)
\(\Rightarrow S_{AIK}=\frac{S_{ABC}}{4}=\frac{160}{4}=40(cm^2)\)
Lời giải:
Theo công thức lượng giác, ta có:
Xét tam giác $AIC$ vuông tại $I$:\(\cos A=\frac{AI}{AC}\)
Xét tam giác $ABH$ vuông tại $H$: \(\cos B=\frac{BH}{AB}\)
Xét tam giác $BKC$ vuông tại $K$: \(\cos C=\frac{CK}{CB}\)
Từ những điều trên suy ra:
\(\cos A.\cos B.\cos C=\frac{AI}{AC}.\frac{BH}{AB}.\frac{CK}{CB}\)
\(\Rightarrow AI.BH.CK=AB.BC.AC.\cos A.\cos B.\cos C\) (đpcm)
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=25\)
Áp dụng HTL: \(BH=\dfrac{AB^2}{BC}=9\)
b, \(\sin\alpha+\cos\alpha=1,4\Leftrightarrow\left(\sin\alpha+\cos\alpha\right)^2=1,96\)
\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha=1,96\\ \Leftrightarrow\sin\alpha\cdot\cos\alpha=\dfrac{1,96-1}{2}=\dfrac{0,96}{2}=0,48\)
\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha\cdot\cos^2\alpha\\ =1^2+2\left(\sin\alpha\cdot\cos\alpha\right)^2=1+2\cdot\left(0,48\right)^2=1,4608\)
Ta thấy ngay \(\Delta AIK\sim\Delta ACB\left(g-g\right)\)
Vậy tỉ số diện tích hai tam giác bằng bình phương tỉ số đồng dạng.
Do góc A = 60o nên \(\frac{AK}{AB}=cos60^o=\frac{1}{2}\)
Vậy thì \(\frac{S_{AIK}}{S_{ABC}}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\Rightarrow S_{AIK}=160:4=40\left(cm^2\right)\)