Tìm a, b biết: 3a+6ab+2b=13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a;b>0\Rightarrow3a+2b+1>1\)
\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\) đồng biến
Mà \(9a^2+b^2\ge2\sqrt{9a^2b^2}=6ab\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)\)
\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge2\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}log_{6ab+1}\left(3a+2b+1\right)=1\\3a=b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6ab+1=3a+2b+1\\b=3a\end{matrix}\right.\)
\(\Rightarrow18a^2+1=3a+6a+1\)
\(\Leftrightarrow18a^2-9a=0\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\)
a: Ápdụng tính chất của DTSBN, ta được:
\(\dfrac{a}{5}=\dfrac{b}{-2}=\dfrac{a+b}{5-2}=\dfrac{12}{3}=4\)
=>a=20; b=-8
b: 5a=4b
=>a/4=b/5
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{3a-2b}{3\cdot4-2\cdot5}=\dfrac{42}{2}=21\)
=>a=84; b=105
\(a-b=13\Rightarrow a=b+13\)
thay \(a=b+13\) vào biểu thức thì ta có:
\(\frac{3a-b}{2a+13}-\frac{3b-a}{2b-13}=\frac{3\left(b+13\right)-b}{2\left(b+13\right)+13}-\frac{3b-\left(b+13\right)}{2b-13}\)
\(=\frac{2b+39}{2b+39}-\frac{2b-13}{2b-13}=1-1=0\)
ta có:3a=2b;5b=7c và 3a+5b-7c=60
=>\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{14}=\frac{b}{21}\left(1\right)\)
=>\(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{c}{15}\left(2\right)\)
từ (1) và (2) ta có :
a/14=b/21=1/15
áp dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{a}{14}=\frac{b}{21}=\frac{c}{15}=\frac{3a+5b-7c}{3.14+5.21-15.7}=\frac{60}{42}=\frac{10}{7}\)
=>a=10/7.14=20
b=10/7.21=30
c=10/7.15=150/7
Các bạn giúp mình nhanh với ạ mình cảm ơn nhiều
3a + 6ab + 2b = 13
=> 3a(1 + 2b) + (1 + 2b) = 14
=> (3a + 1)(2b + 1) = 14
=> 3a + 1; 2b + 1 \(\in\)Ư(14) = {1; -1; 2; -2; 7; -7; 14; -14}
Lập bảng :
Vậy ...