CM: \(\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+\frac{1}{5\sqrt{4}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< \sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại \(n\in N,n\ge1\) có:
\(\frac{1}{\left(n+3\right)\sqrt{n}+n\sqrt{n+3}}=\frac{1}{\sqrt{n\left(n+3\right)}\left(\sqrt{n+3}+\sqrt{n}\right)}=\frac{\sqrt{n+3}-\sqrt{n}}{\sqrt{n\left(n+3\right)}\left(n+3-n\right)}=\frac{\sqrt{n+3}-\sqrt{n}}{3\sqrt{n\left(n+3\right)}}\)
=\(\frac{1}{3}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\)
=> \(\frac{1}{\left(n+3\right)\sqrt{n}+n\sqrt{n+3}}=\frac{1}{3}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\) (1)
Áp dụng (1) vào Q có:
Q=\(\frac{1}{3}\left(1-\frac{1}{\sqrt{4}}\right)+\frac{1}{3}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{3}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{6}}\right)+...+\frac{1}{3}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\)=\(\frac{1}{3}\left(1-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{6}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\)
=\(\frac{1}{3}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{4}}-\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{6}}-..-\frac{1}{\sqrt{n+3}}\right)\)
=\(\frac{1}{3}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n+2}}-\frac{1}{\sqrt{n+3}}\right)\)
@Vũ Minh Tuấn @Lê Thị Thục Hiền @Băng Băng 2k6
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)
a, Ta có
\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)
mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, áp dụng bđt ta có
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)
\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)
\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..
\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)
\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)