K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Ke BH vuong goc voi Ac tai I. Goc ACD+DAC=90 do. Goc DAC+AHI=90 do. Ma AHI=BHD(doi dinh).=>BHD=ACD.=>tanBHD=tanACD=BD/HD. 
=>tanB.tanC=AD/BD.BD/HD=2

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiêp

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có

góc DAB=góc DCH

=>ΔDAB đồng dạng vơi ΔDCH

=>DA/DC=DB/DH

=>DA*DH=DB*DC

c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có

góc DHC=góc FHA

=>ΔHDC đồng dạng vơi ΔHFA

=>HD/HF=HC/HA

=>HF*HC=HD*HA

Xet ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC

=>HF*HC=HB*HE=HD*HA

18 tháng 3 2022

Xét  ∆AHE và ∆BHD, ta có
<D=<E=90° 
<BHD=<EHA ( đối đỉnh)
⟹ ∆AHE ∼∆BHD(g.g)
⟹HA/HB=HE/HD⟹ HA*HD=HB*HE

13 tháng 9 2015

a) Xét tam giác vuông \(\Delta ABD\to\tan B=\frac{AD}{BD}.\)  

Xét tam giác vuông \(\Delta ACD\to\tan C=\frac{AD}{CD}.\)

Vậy \(\tan B\cdot\tan C=\frac{AD}{BD}\cdot\frac{AD}{CD}=\frac{AD^2}{BD\cdot CD}.\)
Mặt khác \(\Delta DHB\sim\Delta DCA\) (g.g), ta suy ra \(\frac{DH}{DB}=\frac{DC}{DA}\to DB\cdot DC=DH\cdot DA.\) Thành thử 
\(\tan B\cdot\tan C=\frac{AD^2}{BD\cdot CD}=\frac{AD^2}{DH\cdot DA}=\frac{AD}{HD}.\)

b.  Theo chứng minh trên \(DH\cdot DA=DB\cdot DC\le\left(\frac{DB+DC}{2}\right)^2=\frac{BC^2}{4}.\)

c.  Đề bài không đúng, đề nghị tác giả xem lại đề!