Xếp 6 chữ số 1, 1, 2, 2, 3, 4 thành hàng ngang sao cho hai chữ số giống nhau thì không xếp cạnh nhau. Hỏi có bao nhiêu cách.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi A là tập hợp tất cả cách sắp xếp, là tập hợp các cách xếp mà chữ cái T đứng cạnh nhau, là tập hợp các cách xếp mà chữ cái D đứng cạnh nhau.
Ta có số phần tử của tập hợp A là (do 2 chữ T như nhau, 2 chữ C như nhau
nên khi hoán vị vẫn tính là 1).
Số phân tử của tập hợp lần lượt là (ta coi 2 chữ T đứng cạnh nhau là 1 chữ, 2 chữ C đứng cạnh nhau là 1 chữ).
Số cách sắp xếp mà vừa có T đứng cạnh nhau, c đứng cạnh nhau là
Vậy số cách sắp xếp cần tính là
.
số cách xếp 6 chữ số đó là: 6!
số cách xếp 6 số đó sao cho 2 chữ số giống nhau thì xếp cạnh nhau là:
Gọi nhóm A gồm 1,1 nhóm B gồm 2,2. có 4! cách xếp A,B với 3,4.
Lấy phần bù 6!-4! ta đc số cách xếp hai chữ số giống nhau thì ko xếp cạnh nhau.
Bạn ơi 11 đứng cạnh nhau nhưng 22 k đứng cạnh nhau và ngc lại thì sao ? Bạn thiếu mất trường hợp đó rồi
1/x-1/y=1/6
<=> 6(y-x) = xy
<=>y(6-x) = 6x (1)
<=>y= 6x/(6-x) (2)
(1) => x<6 => x=1,2,3,4,5
Thay vào (2) ta có các cặp số nguyên thỏa đề bài là :
(x;y)= (2;3);(3;6)
Số cách chọn 2 nam đứng ở đầu và cuối là .
Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là .
Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là:
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là:
Chọn D.