Cho tam giác ABC vuông tại A. Kẻ đường thẳng song song với BC cắt AB,AC lần lượt tại M và N. Biết MB = 12 cm ,NC = 9 cm
Trung điểm của MN và BC là E và F.
a, C/m A,E,F thẳng hàng
b, Trung điểm của BN là G. Tính số đo các cạnh và các góc của tam giác EFG
c, Chứng minh \(\Delta GEF\infty\Delta ABC\)
Mình cần gấp. Mong các bạn giúp đỡ mình.
a) Gọi F' là giao điểm của AE và BC
MN//BC => \(\frac{MN}{BC}=\frac{AN}{AC}\)
NE//F'C => \(\frac{EN}{FC}=\frac{AN}{AC}\)
=> \(\frac{EN}{F'C}=\frac{MN}{BC}=\frac{2EN}{2FC}=\frac{EN}{FC}\Rightarrow F'C=FC\)
mà F', F cùn thuộc cạnh BC
=> F' trùng F
=> A, E, F thẳng hàng
b) Xét tam giác BNC có: Flaf trung điểm BC; G là trung điểm BN
=> FG là đường trung bình tam giác BNC
=> FG//=1/2 NC
=> FG=9:2=4,5 cm
Xét tam giác BNM tương tự
có: EG//=1/2 BM
=> EG=12:2=6 cm
Ta lại có: EG//BM => EG//AB
FG //NC => FG//AC
Mà AB vuông AC
=> EG vuông FG
=> Tam giác EGF vuông tại G có: FG=4,5 cm và EG=6 cm
Áp dụng định lí pitago:
=> \(EF^2=GE^2+GF^2=4,5^2+6^2=7,5^2\)
=> EF=7,5
\(\widehat{EGF}=90^o\)
\(\cos\widehat{GEF}=\frac{GE}{EF}=\frac{6}{7,5}=\frac{4}{5}\Rightarrow\widehat{GEF}=arcos\frac{4}{5}\)
\(\cos\widehat{GFE}=\frac{GF}{EF}=\frac{4,5}{7,5}=\frac{3}{5}\Rightarrow\widehat{GFE}=arcos\frac{3}{5}\)
c) Ta có: MN//BC
=> \(\frac{BM}{AB}=\frac{CN}{AC}\Rightarrow\frac{AB}{AC}=\frac{BM}{CN}=\frac{2GE}{2GF}=\frac{GE}{GF}\)
Xét tam giác vuông GEF và tam giác vuông ABC
có: \(\frac{AB}{AC}=\frac{GE}{GF}\)
=> tam giác GEF đồng dạng với tam giác ABC