K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

5 tháng 9 2015

a) a > b mà b \(\in\) N* nên a \(\in\) N*

 \(a>b\Rightarrow an>bn\) (vì a,b,n \(\in\) N*)

\(\Rightarrow ab+an>ab+bn\) hay \(a.\left(b+n\right)>b.\left(a+n\right)\)

Do đó \(\frac{a}{b}>\frac{a+n}{b+n}\). Đề sai. 

17 tháng 5 2017

fhfgjjgjgf

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)Tính giá trị D = x ^2017 + y^2017 + z^2017Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)bài 3 : Cho a, b, c khác nhau thỏa mãn :\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)Chứng minh : 2 phân...
Đọc tiếp

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?

0
21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự

7 tháng 6 2017

Ac. Có bài giải lúc nào vậy.

7 tháng 6 2017

Ta có   \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\)  \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\)  \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\)  \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\)  a = -b hoặc b = -c hoặc c = -a

1) Nếu a = -b thì  \(a^{2n+1}+b^{2n+1}=-b^{2n+1}+b^{2n+1}=0\)và  \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=\frac{1}{-b^{2n+1}}+\frac{1}{b^{2n+1}}=0\)

\(\Rightarrow\)  \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)

Tương tự cho 2 trường hợp còn lại suy ra đpcm.

25 tháng 10 2016

Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n-b^n}{c^n-d^n}=\frac{a^n+b^n}{c^n+d^n}\left(đpcm\right)\)

16 tháng 5 2019

\(\frac{a}{b}< \frac{a+n}{b+n}\) \(\left(1\right)\)

\(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)

\(\Leftrightarrow ab+an< ab+bn\)

\(\Leftrightarrow an< bn\)

\(Do.a< b\)nên an<bn\(\Rightarrow\)(1)

\(\frac{a}{b}>\frac{a+n}{b+n}\)\(\left(2\right)\)

\(\Leftrightarrow a\left(b+n\right)>b\left(a+n\right)\)

\(\Leftrightarrow ab+an>ab+bn\)

\(\Leftrightarrow an>bn\)

Do a>b nên \(\Rightarrow\)(2)

13 tháng 6 2016

a)(a+b+c)(ab+bc+ac)-abc=a(ab+bc+ac)+b(ab+bc+ac)+c(ab+bc+ac)-abc

=a2b+abc+a2c+ab2+b2c+abc+abc+bc2+ac2-abc

=(abc+a2b)+(a2c+ac2)+(b2c+ab2)+(bc2+abc)+(abc-abc)

=ab(c+a)+ac(c+a)+b2(c+a)+bc(c+a)

=(ab+ac+b2+bc)(c+a)

=(a+b)(b+c)(c+a)

13 tháng 6 2016

a) \(\left(a+b+c\right)\left(ab+bc+ac\right)-abc=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+c^2b+c^2a-abc\)

\(=a^2b+ab^2+b^2c+bc^2+c^2a+a^2c+2abc=b\left(a^2+2ac+c^2\right)+b^2\left(a+c\right)+ac\left(a+c\right)\)

\(=b\left(a+c\right)^2+b^2\left(a+c\right)+ac\left(a+c\right)=\left(a+c\right)\left(ab+bc+b^2+ac\right)\)

\(=\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=\left(a+c\right)\left(a+b\right)\left(b+c\right)\)

b) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(áp dụng từ câu a) )

\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)

Đặt \(a^{2n+1}=x;b^{2n+1}=y;c^{2n+1}=z\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)( áp dụng câu a) )

\(\Rightarrow x+y=0\)hoặc \(y+z=0\)hoặc \(z+x=0\)

  • Với \(x+y=0\Leftrightarrow a^{2n+1}+b^{2n+1}=0\Leftrightarrow\left(a+b\right).A=0\)với A là một đa thức 

Mà ta lại có \(a+b=0\left(cmt\right)\)\(\Rightarrow\)\(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=0\)\(\Rightarrow\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}\)(luôn đúng)

Tương tự với các trường hợp còn lại, ta có điều phải chứng minh.

\(\)