cho |x|>1,|y|>1 hỏi\(\left|\frac{x+y}{xy}\right|\le2\)dấu bằng xảy ra khi nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có : ( x- 3 ) 2 \(\ge\)0 <=> x2 - 6.x + 9 \(\ge\) 0 <=> x. ( x - 1 ) \(\ge\)5.x-9 .Tương tự : y. ( y - 1 )\(\ge\) 5.y - 9 .
Từ đó : x . ( x - 1 ) + y . ( y - 1 ) \(\ge\) 5. ( x + y ) -18 \(\ge\) 5. 6 - 18 = 12 . Khi x = y = 3 thì đẳng thức xảy ra => đpcm
hùi nãy mem nào k sai cho t T_T t buồn
\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)
\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)
\(=\frac{27}{8}-\frac{3}{8}+6=9\)
\(\Rightarrow\)\(VT\ge9\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
Chúc bạn học tốt ~
Giải xàm tí ạ!\(VT-VP=\frac{1}{2}\left[\left(x^2-3x+1\right)^2+\left(y^2-3y+1\right)^2+\left(x-y\right)^2\left(5-x-y\right)\left(x+y-1\right)\right]\ge0\)
=> qed
??? KHang ơi! Sai rồi ? Tại sao VT - Vp = 1/2. Dòng thứ 2 ???
câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu
câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)
\(\left(\frac{x^2-xy}{x^2+xy}-\frac{x}{x+y}\right):\left(\frac{xy}{x^3-xy^2}+\frac{1}{x+y}\right)\) (ĐKXĐ : \(x\ne0;x\ne y;x\ne-y\))
\(=\left(\frac{x\left(x-y\right)}{x\left(x+y\right)}-\frac{x^2}{x\left(x+y\right)}\right):\left(\frac{xy}{x\left(x^2-y^2\right)}+\frac{x\left(x-y\right)}{x\left(x^2-y^2\right)}\right)\)
\(=\frac{x^2-xy-x^2}{x\left(x+y\right)}:\frac{xy+x^2-xy}{x\left(x-y\right)\left(x+y\right)}=\frac{-y}{x+y}.\frac{\left(x-y\right)\left(x+y\right)}{x}=\frac{-y\left(x-y\right)}{x}=\frac{y\left(y-x\right)}{x}\)
b) Không , vì ĐKXĐ của P.
c) \(\left|P\right|>P\Leftrightarrow\orbr{\begin{cases}P>P\\P< -P\end{cases}\Leftrightarrow}P< 0\)
Để P < 0 thì \(0< y< x\)
Sử dụng bất đẳng thức Cô si cho hai số dương ta được
a+b\ge2\sqrt{ab}a+b≥2ab ; b+c\ge2\sqrt{bc}b+c≥2bc ; c+a\ge2\sqrt{ca}c+a≥2ca
Nhân theo vế ba bất đẳng thức này ta được đpcm.
áp dụng bđt cô si ta được
1+x ≥ 2x , 1+y ≥ 2y, 1+z ≥ 2z
Nhân theo vế ba bất đẳng thức này ta được
1+x)(1+y)(1+z)≥ \(8\sqrt{xyz}\)
Sử dụng giả thiết ta có đpcm. Đẳng thức xảy ra khi và chỉ khi .