cho biểu thức
\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a, tìm điều kiện xác định và rút gọn Q
b, Tìm giá trị của a để Q >0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(\hept{\begin{cases}a>0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\\a\ne4\end{cases}}\)
Ta có:
\(1P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)\)
\(=\frac{\sqrt{a}-2}{\sqrt{a}}\)
I don't now
sorry
...................
nha
\(a,ĐKXĐ:\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)
\(b,A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}+1}-\frac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\frac{a-1}{2\sqrt{a}}.\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}-1}\right)\)
\(=\frac{a-1}{2\sqrt{a}}.\frac{\sqrt{a}.\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{a-1}\)
\(=\frac{\sqrt{a}\left(\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right)}{2\sqrt{a}}\)
\(=\frac{\sqrt{a}.\left(\sqrt{a}-1-\sqrt{a}-1\right).\left(\sqrt{a}-1+\sqrt{a}+1\right)}{2\sqrt{a}}\)
\(=\frac{\sqrt{a}.\left(-2\right).2\sqrt{a}}{2\sqrt{a}}\)
\(=-2\sqrt{a}\)
\(c,\)Để A= -4 thì
\(-2\sqrt{a}=-4\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\)
Kết bạn với mình nha ....
\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(b,\)\(A=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right).\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right).\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
\(c,A_{max}\Leftrightarrow1-x\)lớn nhất \(\Rightarrow x\)nhỏ nhất
Mà \(x\ge0\)\(\Rightarrow x\)nhỏ nhất \(\Leftrightarrow x=0\)
\(\Rightarrow A_{max}=1\Leftrightarrow x=0\)
a
\(ĐKXĐ:a\ne0;a\ne1;a\ne\sqrt{2}\)
\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(Q=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{1}\)
\(Q=\frac{\sqrt{a}-2}{\sqrt{a}}\)
b
\(Q>0\Leftrightarrow\frac{\sqrt{a}-2}{\sqrt{a}}>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow\sqrt{a}>2\Leftrightarrow a>\sqrt{2}\)