cho a,b,c là các số nguyên theo mẫu: ab + ac + bc = 1
CT: S= \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự : \(b^2+1=\left(a+b\right)\left(b+c\right)\)và \(c^2+1=\left(a+c\right)\left(b+c\right)\)
Suy ra : \(S=\left(a+b\right)\left(a+c\right).\left(a+b\right)\left(b+c\right).\left(a+c\right)\left(b+c\right)\)
\(\Leftrightarrow S=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\)là số chính phương \(\forall\)a ,b ,c nguyên !
với ab+bc+ca=1, ta có
\(a^2+1=a^2+ab+bc+ca=\left(a^2+ab\right)+\left(bc+ca\right)\)\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)
tương tự tra có \(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
=> S=\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
mà a,b, c là các số nguyên => \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) là số chính phương
=> S là số chính phương (ĐPCM)
Ta có:
\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự suy ra biểu thức đã cho bằng \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) và là số chính phương
Ta có : \(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+5bc+b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\)
Gọi \(\left(c;a^2c^2+2ac+1-6c-5b\right)=d\)
Khi đó ta có \(\hept{\begin{cases}c⋮d\\a^2c^2+2ac-6c+1-5b⋮d\end{cases}\Rightarrow1-5b⋮d}\)
Đặt \(\hept{\begin{cases}c=xd\\a^2c^2+2ac-6c+1-5b=yd\end{cases}}\left[x,y\in Z;\left(x;y\right)=1\right]\)
\(\Rightarrow c\left(a^2c^2+2a-6c+1-5b\right)=xyd^2\Rightarrow b^2=xyd^2\)
\(\Rightarrow b⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy c là số chính phương.
ÁP dụng BĐT AM-Gm ta có:
\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)
ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm
\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)
\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)
Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)
\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)
Đúng hay ta có ĐPCM xyar ra khi a=b=c=1
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
giả sử c chẵn khi đó ta có:
\(v_2\left(c\right)=v_2\left(5c+2b\right)+v_2\left(2c+b\right)\)
Nếu b lẻ thì ta có: \(v_2\left(c\right)=v_2\left(5c+2b\right)=v_2\left(5c\right)\Rightarrow v_2\left(5c\right)< v_2\left(2b\right)=1\)
Điều này vô lý!
Do đó c lẻ: Xét p|c là 1 ước nguyên tố của c
Ta có: \(v_p\left(c\right)=v_p\left(5c+2b\right)+v_p\left(2c+b\right)\)
Ta thấy \(v_p\left(c\right)>v_p\left(5c+2b\right);v_p\left(2c+b\right)>0\)
Do đó: \(v_p\left(5c+2b\right)=min\left[v_p\left(c\right);v_p\left(4c+2b\right)\right]\)
\(\Rightarrow v_p\left(5c+2b\right)=v_p\left(4c+2b\right)=v_p\left(2c+b\right)\)
\(\Rightarrow v_p\left(c\right)=2v_p\left(5c+2b\right):\)số chẵn nên => c là số chính phương.(đpcm)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Rightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ca=1\)
Khi đó: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[ab+bc+ca+a^2\right]\left[ab+bc+ca+b^2\right]\left[ab+bc+ca+c^2\right]\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]\)
\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)là số chính phương.
\(S=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)
\(S=\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)\left(c^2+ab+bc+ac\right)\)
\(S=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
là số chính phương (đpcm)