Ai giải giúp mik câu này đi ạ
cảm ơn nhiều
3 ( 2x-1)-2=13
tìm x giúp mik nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
19.
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)=4\Rightarrow-2\le a+b\le2\)
\(P=3\left(a+b\right)+ab=3\left(a+b\right)+\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}=\dfrac{1}{2}\left(a+b\right)^2+3\left(a+b\right)-1\)
Đặt \(a+b=x\Rightarrow-2\le x\le2\)
\(P=\dfrac{1}{2}x^2+3x-1=\dfrac{1}{2}\left(x+2\right)\left(x+4\right)-5\ge-5\) (đpcm)
Dấu "=" xảy ra khi \(x=-2\) hay \(a=b=-1\)
20.
Đặt \(P=2a+2ab+abc\)
\(P=2a+ab\left(2+c\right)\le2a+\dfrac{a}{4}\left(b+2+c\right)^2=2a+\dfrac{a}{4}\left(7-a\right)^2\)
\(P\le\dfrac{1}{4}\left(a^3-14a^2+57a-72\right)+18=18-\dfrac{1}{4}\left(8-a\right)\left(a-3\right)^2\le18\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;2;0\right)\)
\(A=-\left(x^2-4x+4\right)-\left(y^2+4y+4\right)+10\\ A=-\left(x-2\right)^2-\left(y+2\right)^2+10\le10\\ A_{max}=10\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
\(1,\sqrt{5x^2-2x+2}=x+1\)
\(\Leftrightarrow\left(\sqrt{5x^2-2x+2}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow5x^2-2x+2=x^2+2x+1\)
\(\Leftrightarrow5x^2-x^2-2x-2x=1-2\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
\(2,\sqrt{4x^2-x+1}-2x=3\)
\(\Leftrightarrow\left(\sqrt{4x^2-x+1}\right)^2=\left(3+2x\right)^2\)
\(\Leftrightarrow4x^2-x+1=9+12x+4x^2\)
\(\Leftrightarrow4x^2-4x^2-x-12x=9-1\)
\(\Leftrightarrow-13x=8\)
\(\Leftrightarrow x=-\dfrac{8}{13}\)
Vậy \(S=\left\{-\dfrac{8}{13}\right\}\)
1: =>x>=-1 và 5x^2-2x+2=x^2+2x+1
=>x>=-1 và 4x^2-4x+1=0
=>x=1/2
2: =>\(\sqrt{4x^2-x+1}=2x+3\)
=>x>=-3/2 và 4x^2-x+1=4x^2+12x+9
=>x>=-3/2 và -11x=8
=>x=-8/11(nhận)
Ko cần đâu bn à mk mong bn đấy
a)\(\left(3x-1\right)\left(5-\frac{1}{2}x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5-\frac{1}{2}x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)
b)\(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)
\(2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}\)
\(\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{8}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{29}{12}\\x=-\frac{13}{12}\end{cases}}\)
a)\(\left(3x-1\right)\left(\frac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow\)3x - 1 = 0 hay \(\frac{-1}{2}\)x + 5 = 0
\(\Leftrightarrow\)3x = 1 I\(\Leftrightarrow\)\(\frac{-1}{2}\)x = -5
\(\Leftrightarrow\) x = \(\frac{1}{3}\) I\(\Leftrightarrow\) x = 10
b) 2 I \(\frac{1}{2}x-\frac{1}{3}\)I - \(\frac{3}{2}\)=\(\frac{1}{4}\)
\(\Leftrightarrow\) 2 I\(\frac{1}{2}x-\frac{1}{3}\)I = \(\frac{7}{4}\)
\(\Leftrightarrow\) I\(\frac{1}{2}x-\frac{1}{3}\)I = \(\frac{7}{8}\)
\(\Leftrightarrow\)\(\frac{1}{2}x-\frac{1}{3}\)= \(\frac{7}{8}\) hay \(\frac{1}{2}x-\frac{1}{3}\)= \(\frac{-7}{8}\)
\(\Leftrightarrow\)\(\frac{1}{2}x\) = \(\frac{29}{24}\) I\(\Leftrightarrow\)\(\frac{1}{2}x\) = \(\frac{-13}{24}\)
\(\Leftrightarrow\) x = \(\frac{29}{12}\) I\(\Leftrightarrow\) x = \(\frac{-13}{12}\)
c) (2x +\(\frac{3}{5}\))2 - \(\frac{9}{25}\)= 0
\(\Leftrightarrow\)(2x +\(\frac{3}{5}\))2 = \(\frac{9}{25}\)
\(\Leftrightarrow\) 2x +\(\frac{3}{5}\) = \(\frac{3}{5}\) hay 2x +\(\frac{3}{5}\)= \(\frac{-3}{5}\)
\(\Leftrightarrow\) 2x = 0 I \(\Leftrightarrow\)2x = \(\frac{-6}{5}\)
\(\Leftrightarrow\) x = 0 I \(\Leftrightarrow\) x = \(\frac{-3}{5}\)
d) 3(x -\(\frac{1}{2}\)) - 5(x +\(\frac{3}{5}\)) = -x + \(\frac{1}{5}\)
\(\Leftrightarrow\)3x - \(\frac{3}{2}\)- 5x - 3 = -x + \(\frac{1}{5}\)
\(\Leftrightarrow\)-2x + x - \(\frac{9}{2}\)- \(\frac{1}{5}\)= 0
\(\Leftrightarrow\)-x = \(\frac{-47}{10}\)
\(\Leftrightarrow\) x = \(\frac{47}{10}\)
\(\left|2x-3\right|=3-2x\)
\(ĐK:x\le\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3-2x\\3-2x=3-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\left(đúng\right)\end{matrix}\right.\)
Vậy \(S=\left\{x\in R;x=\dfrac{3}{2}\right\}\)
b)\(\left(x-8\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-8=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=2\end{cases}}\)
c) \(\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)=9x+200\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+10\right)=9x+200\) (10 số hạng x)
\(\Leftrightarrow10x+55=9x+200\Leftrightarrow x+55=200\)
\(\Leftrightarrow x=145\)
3 . ( 2x - 1 ) - 2 = 13
3 . ( 2x - 1 ) = 12 + 3
3 . ( 2x - 1 ) = 15
2x - 1 = 15 : 3
2x - 1 = 5
2x = 5 + 1 = 6
x = 6 : 2 = 3
Vậy x = 3
\(3\left(2x-1\right)-2=13\)
\(3\left(2x-1\right)=15\)
\(2x-1=5\)
\(2x=6\)
\(x=3\)