Tìm x
a) 2x - 3 = x + 1 phần 2
b) 4x - (2x + 1) = 3 - 1 phần 3 + x
Các bạn giúp với ạ, xin lỗi vì mình không biết viết phân số như nào ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
De a, la so nguyen thi -3 phai chia het cho x-1
=>x-1 thuộc ước của -3={1,-1,3,-3
Ta có bảng giá trị:
x-1 1 -1 3 -3
x 2 0 4 -2
Vay x thuoc {2,0,4,-2} thi a, la so nguyen
b,Đề -4/2x-1 là số nguyên thì -4 phải chia hết cho 2x-1 =>2x-1 thuộc ước của -4={1,-1,2,-2,4,-4}
Ta có bảng giá trị:
2x-1 1 -1 2 -2 4 -4
x 1 0 / / / /
(/ là k có giá trị nào)
=>x thuộc {1,0} thì b, là số nguyên
c,Đề c, là số nguyên =>3x+7 chia het cho x-1
=>3x +7 -(x-1) chia het cho x-1
=>3x+7-3(x-1) chia het cho x-1
=>3x +7-3x +3 chia het cho x-1
=>10 chia het cho x-1
=>x-1 thuộc ước của 10={1,-1,2,-2,5,-5,10,-10)
Ta có bảng giá trị:
x-1 1 -1 2 -2 5 -5 10 -10
x 2 0 3 -1 6 -4 11 -9
Vậy x thuộc {2,0,3,-1,6,-4,11,-9} thì c, là số nguyên
d, bạn tự làm nha
Bn kiểm tra lại kq nhé
(x-1)(2x^2-8)=0
\(\Leftrightarrow\left(x-1\right)\left(2x^2-8\right)=0\\ \left(2x^3-8x-2x^2+8\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=\dfrac{8}{2}\)
3x^2-8x+5=0
áp dụng công thức bậc 2 ta có:
\(x=\dfrac{-\left(-8\right)\pm\sqrt{\left(-8\right)^2-4.3.5}}{2.3}\)
\(\Rightarrow x=\dfrac{5}{3};x=1\)
(7x-1).2x-7x+1=0
\(\Leftrightarrow\left(7x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{7};x=\dfrac{1}{2}\)
a)
\(\frac{x-3}{10}=\frac{4}{x-3}\)
=> ( x - 3 )2 = 4 . 10.
( x - 3 )2 = 40
Mà x - 3 thuộc Z ( vì x thuộc Z ) nên ( x - 3 )2 là số chính phương.
Do 40 không là số chính phương.
=> Ko tìm được x thuộc Z thỏa mãn đề bài.
b)
\(\frac{x+5}{9}=\frac{4}{x+5}\)
=> ( x + 5 )2 = 4 . 9
( x + 5 )2 = 36
=> x + 5 = 6 hoặc x + 5 = -6.
+) x + 5 = 6
x = 1.
+) x + 5 = -6
x = -11.
Vậy x = 1; x = -11.
a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)
c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)
a) 2x - 3 = x + 1/2
<=> 2x - 3 = 1/2x + 1/2
<=> 2x - 3 - 1/2x = 1/2
<=> 3/2x - 3 = 1/2
<=> 3/2x = 1/2 + 3
<=> 3/2x = 7/2
<=> x = 7/2 : 3/2
<=> x = 7/3
=> x = 7/3
\(a,2x-3=x+\frac{1}{2}\)
\(2x-3=\frac{1}{2}x+\frac{1}{2}\)
\(2x-3-\frac{1}{2}x=\frac{1}{2}\)
\(\frac{3}{2}x-3=\frac{1}{2}\)
\(\frac{3}{2}x=\frac{1}{2}+3\)
\(\frac{3}{2}x=\frac{7}{2}\)
\(x=\frac{7}{2}:\frac{3}{2}\)
\(x=\frac{14}{6}=\frac{7}{3}\)
\(\)B làm tương tự