Chứng minh rằng T=2n+3n+5n+6n không là lập phương của một số tự nhiên với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt UCLN (2n+1;2n+3)=d
TC UCLN(2n+1;2n+3)=d
=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)
=>(2n+3)-(2n+1):d
=>2:d
=>d e U(2)={1;2}
Mà 2n+1 lẻ=> d lẻ=>d=1
b)
Đặt UCLN (2n+5;3n+7)=d
TC UCLN(2n+5;3n+7)=d
=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)
=>(6n+15)-(6n+14):d
=>1:d
=>d=1
phần c bạn tự làm nốt nhé
học tốt nhé
b, Gọi ƯCLN(3n+2; 5n+3) là d. Ta có:
3n+2 chia hết cho d=> 15n+10 chia hết cho d
5n+3 chia hết cho d => 15n+9 chia hết cho d
=> 15n+10 - (15n+9) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(3n+2; 5n+3) = 1
=> 3n+2 và 5n+3 nguyên tố cùng nhau (Đpcm)
a, Gọi ƯCLN(2n+1; 6n+5) là d. Ta có:
2n+1 chia hết cho d => 6n+3 chia hết cho d
6n+5 chia hết cho d
=> 6n+5 - (6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 là số lẻ không chia hết cho 2
=> d = 1
=> ƯCLN(2n+1; 6n+5) = 1
=> 2n+1 và 6n+5 nguyên tố cùng nhau (Đpcm)
a) Gọi ƯCLN của 2n + 1 và 6n + 5 là d.
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
=> 2 chia hết cho d.
Mà 2n + 1 là số lẻ không chia hết cho d => d = 1
=> 2n + 1 và 6n + 5 là một cặp số nguyên tố.
b) Gọi ƯCLN của 3n + 2 và 5n + 3 là d
=> 15n + 10 chia hết cho d và 15n + 9 chia hết cho d
=> 15n + 10 - (15n + 9) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 3n + 2 và 5n + 3 là một cặp số nguyên tố (đpcm)
\(\frac{2n+1}{3n+2}\)
Gọi \(d\inƯC\left(2n+1;3n+2\right)\)
Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Leftrightarrow6n+4-6n+3⋮d\)
\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)
\(\frac{4n+1}{6n+1}\)
Gọi \(d\inƯC\left(4n+1;6n+1\right)\)
Ta có :
\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)
\(\Leftrightarrow12n+3-12n+2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=\pm1\)