Chứng minh rằng nếu các số nguyên dương m,n thỏa mãn 2m+1 chia hết cho 2n+1 thì m chia hết cho n. Các bạn giúp mình với, mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
( 2m + n ) . ( m + 2n ) = 2m . m + n . m + 2m . 2n + n . 2n
= 2m2 + mn + 4mn + 2n2
= 2 ( m2 + n2 ) + 5mn
Vì m2 + n2 chia hết cho 5 => 2 ( m2 + n2 ) chia hết cho 5 và 5mn chia hết cho 5
=> 2 ( m2 + n2 ) + 5mn chia hết cho 5
=> (2m + n ) ( m + 2n ) chia hết cho 5
=> Tồn tại ít nhất 1 trong hai số 2m + n hoặc m + 2n chia hết cho 5.
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
......................?
mik ko biết
mong bn thông cảm
nha ................