Cho tứ giác ABCD, các điểm E,F,G,H theo thứ tự chia trong các cạnh AB,BC,CD,DA theo tỉ số 1:2. Chứng minh rằng
a)EG=FH
b)EG vuông góc FH
Mn giúp vs ạk mk cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GỌI M,N THEO THỨ TỰ LÀ TRUNG ĐIỂM CỦA CF,DG
TA CÓ\(CM=\frac{1}{2};CF=\frac{1}{3};BC\Rightarrow\frac{BM}{BA}=\frac{1}{3}\Rightarrow\frac{BE}{BA}=\frac{BM}{BC}=\frac{1}{3}\)
=>EM//AC\(\Rightarrow\frac{EM}{AC}=\frac{BM}{BE}=\frac{2}{3}\Rightarrow EM=\frac{2}{3}AC\left(1\right)\)
TƯƠNG TỰ,TA CÓ:NF//BD\(\Rightarrow\frac{NF}{BD}=\frac{CF}{CB}=\frac{2}{3}\Rightarrow NF=\frac{2}{3}BD\left(2\right)\)
MÀ AC=BD(3) TỪ (1);(2);(3) SUY RA EM=NF(A)
TƯƠNG TỰ NHƯ TRÊN TA CÓ:MG//BD,NH//AC VÀ MG=NH=\(\frac{1}{3}AC\left(B\right)\)
MẶC KHÁC EM//AC;MG//BD VÀ \(AC\perp BD\Rightarrow EM\perp MG\Rightarrow\widehat{EMG}=90^0\left(4\right)\)
TƯƠNG TỰ TA CÓ:\(\widehat{FNH}=90^0\left(5\right)\)TỪ (4) VÀ (5) SUY RA \(\widehat{EMG}=\widehat{FNH}=90^0\left(C\right)\)
TỪ (A),(B),(C) SUY RA \(\Delta EMG=\Delta FNH\left(C.G.C\right)\Rightarrow EG=FH\)
B)GỌI GIAO ĐIỂM CỦA EG VÀ FH LÀ O;CỦA EM VÀ FH LÀ P;CỦA EM VÀ FN LÀ Q THÌ
\(\widehat{PQF}=90^0\Rightarrow\widehat{QPF}+\widehat{QFP}=90^0\)MÀ \(\widehat{QPF}=\widehat{OPE}\)(ĐỐI ĐỈNH),\(\widehat{OEP}=\widehat{QFP}\left(\Delta EMG=\Delta FNH\right)\)
\(\Rightarrow\widehat{EOP}=\widehat{PQF}=90^0\Rightarrow EO\perp OP\Rightarrow EG\perp FH\)