Số tự nhiên n có 54 ước.Chứng minh rằng tích các ước của n bằng n27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇒ Gọi các ước của số tự nhiên n lần lượt là d1 ; d2 ; d3 ; ... ; d54 ( d1 ; d2 ; d3 ; ... ; d54 thuộc N* ; d1 khác d2 khác d3 khác ... khác d54 ).
Ta có: n = d1 x d54 = d2 x d53 = d3 x d52 = ... = d27 x d28.
⇒ ( d1 x d54 ) x ( d2 x d53 ) x ( d3 x d52 ) x ... x ( d27 x d28 ) = n x n x n x ... x n . ( có 27 số n )
d1 x d2 x d3 x d4 x ... x d53 x d54 = n27
=> Kết luận → Các ước của số tự nhiên n bằng n27
Câu 1: Ta có 39=13.3.
Số các ước của n sẽ có dạng \(\left(\alpha_1+1\right)\)\(\left(\alpha_2+1\right)\)=13.3=>\(\alpha_1\)=12, \(\alpha_2\)=2
Vậy n=m12.n2=(m6.n)2=a2 với a=m6.n
Câu 2: Tích các ước là: P P=m.m2.m3.....m12.m.n.m2.n.m3.n.....m12.n.m.n2.m2.n2.m3.n2.....m12.n2.n2.n
Vì 1+2+3+...+12 = 78 nên P=m78.3.n12+24+2+1=m234.n39=m6.39.n39=(m6.n)39=a39
+ Gọi các ước của số tự nhiên n lần lượt là d1 ; d2 ; d3 ; ... ; d54 ( d1 ; d2 ; d3 ; ... ; d54 thuộc N* ; d1 khác d2 khác d3 khác ... khác d54 ).
Ta có: n = d1 x d54 = d2 x d53 = d3 x d52 = ... = d27 x d28.
=> ( d1 x d54 ) x ( d2 x d53 ) x ( d3 x d52 ) x ... x ( d27 x d28 ) = n x n x n x ... x n . ( 27 số n )
d1 x d2 x d3 x d4 x ... x d53 x d54 = n27
=> Các ước của số tự nhiên n có h bằng n27. ( đpcm )
+ Gọi các ước của số tự nhiên n lần lượt là d1 ; d2 ; d3 ; ... ; d54 ( d1 ; d2 ; d3 ; ... ; d54 thuộc N* ; d1 khác d2 khác d3 khác ... khác d54 ).
Ta có: n = d1 x d54 = d2 x d53 = d3 x d52 = ... = d27 x d28.
=> ( d1 x d54 ) x ( d2 x d53 ) x ( d3 x d52 ) x ... x ( d27 x d28 ) = n x n x n x ... x n . ( 27 số n )
d1 x d2 x d3 x d4 x ... x d53 x d54 = n27
=> Các ước của số tự nhiên n có h bằng n27. ( đpcm )