Tìm GTNN và GTLN (nếu có) của các hàm số sau:
1, y=sin6x +cos6x
2, y=\(\sqrt{4-cos^{2^{ }}3x}\) +1
3, y= 3(3sinx +4cosx )2 +4(4cosx +3sinx ) +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y=\frac{1}{2}sin2x-1\)
Do \(-1\le sin2x\le1\Rightarrow-\frac{3}{2}\le y\le-\frac{1}{2}\)
\(y_{min}=-\frac{3}{2}\) ; \(y_{max}=-\frac{1}{2}\)
2.
\(y=5+5\left(\frac{4}{5}cosx-\frac{3}{5}sinx\right)=5+5cos\left(x+a\right)\) với \(cosa=\frac{4}{5}\)
Do \(-1\le cos\left(x+a\right)\le1\Rightarrow0\le y\le10\)
\(y_{min}=0\) ; \(y_{max}=10\)
Lời giải:
Đặt \(3\sin x+4\cos x=t\)
Áp dụng BĐT Bunhiacopxky:
\(t^2=(3\sin x+4\cos x)^2\leq (3^2+4^2)(\sin ^2x+\cos ^2x)=25\)
\(\Rightarrow -5\leq t\leq 5\)
Với $t\in [-5;5]$ ta có:
\(y=3t^2+4t+1\leq 3.25+4.5+1=96\)
Mặt khác: \(y=3t^2+4t+1=3(t+\frac{2}{3})^2-\frac{1}{3}\)
\((t+\frac{2}{3})^2\geq 0, \forall t\in [-5;5]\Rightarrow y\geq -\frac{1}{3}\)
Vậy \(y_{\min}=\frac{-1}{3}; y_{\max}=96\)