K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

26 tháng 11 2018

Đáp án C

7 tháng 3 2017

15 tháng 8 2019

NV
1 tháng 10 2020

1.

\(y=\frac{1}{2}sin2x-1\)

Do \(-1\le sin2x\le1\Rightarrow-\frac{3}{2}\le y\le-\frac{1}{2}\)

\(y_{min}=-\frac{3}{2}\) ; \(y_{max}=-\frac{1}{2}\)

2.

\(y=5+5\left(\frac{4}{5}cosx-\frac{3}{5}sinx\right)=5+5cos\left(x+a\right)\) với \(cosa=\frac{4}{5}\)

Do \(-1\le cos\left(x+a\right)\le1\Rightarrow0\le y\le10\)

\(y_{min}=0\) ; \(y_{max}=10\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2019

Lời giải:

Đặt \(3\sin x+4\cos x=t\)

Áp dụng BĐT Bunhiacopxky:

\(t^2=(3\sin x+4\cos x)^2\leq (3^2+4^2)(\sin ^2x+\cos ^2x)=25\)

\(\Rightarrow -5\leq t\leq 5\)

Với $t\in [-5;5]$ ta có:

\(y=3t^2+4t+1\leq 3.25+4.5+1=96\)

Mặt khác: \(y=3t^2+4t+1=3(t+\frac{2}{3})^2-\frac{1}{3}\)

\((t+\frac{2}{3})^2\geq 0, \forall t\in [-5;5]\Rightarrow y\geq -\frac{1}{3}\)

Vậy \(y_{\min}=\frac{-1}{3}; y_{\max}=96\)

14 tháng 6 2018

Chọn A