\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\left(-\frac{5}{6}\right)-\frac{-7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}+\frac{7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)+\left(\frac{5}{6}-\frac{5}{6}\right)+\frac{7}{8}+\frac{6}{7}\)
\(=\frac{7}{8}+\frac{6}{7}=\frac{49}{56}+\frac{48}{56}=\frac{49+48}{56}=\frac{97}{56}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)-\left(\frac{4}{5}-\frac{4}{5}\right)-\left(\frac{6}{7}+\frac{5}{6}\right)\)
\(=-\frac{71}{42}\)
-\(\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}=-\frac{4}{6}+\frac{1}{6}+\frac{3}{4}-\frac{2}{5}=-\frac{2}{4}+\frac{3}{4}-\frac{2}{5}=\frac{1}{4}-\frac{2}{5}=-\frac{3}{20}\)
= \(-\frac{3}{20}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
= \(\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{-2}{3}+\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{-4}{5}+\frac{4}{5}\right)+\frac{5}{6}-\frac{6}{7}\)
= \(\frac{5}{6}-\frac{6}{7}\)
= \(\frac{-1}{42}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{5}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{-2}{3}+\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{-4}{5}+\frac{4}{5}\right)+\frac{5}{6}-\frac{6}{7}\)
\(=\frac{5}{6}-\frac{6}{7}\)
\(=\frac{-1}{42}\)