K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2015

câu này vừa thi hsg huyện thiệu hóa xong
a+b+c=1 =>a^3+b^3+c^3+3(a+b)(b+c)*c+a)=1 ....

a: Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a+b+c=0\)

21 tháng 8 2021

a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)

a: Ta có: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow a+b+c=0\)

22 tháng 12 2021

ai cứu mình với ạ:(

10 tháng 12 2017

Ta có :

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Do \(a+b=a^3+b^3\)

\(\Rightarrow a+b=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\Rightarrow a^2-ab+b^2=1\)

\(a^2=b^2=a+b\) ,ta có :

\(a+b-ab=1\)

\(\Rightarrow a+b-ab-1=0\)

\(\Rightarrow\left(a-1\right)-\left(ab-b\right)=0\)

\(\Rightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Rightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}a-1=0\\1-b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

Thay vaò biểu thức ,có :

\(1^{2015}+1^{2015}=1+1=2\)

19 tháng 2 2021

Áp dụng bđt Cô- si với các số a,b,c>0:

\(a^3+1+1\ge3a,b^3+1+1\ge3b,c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3a+3b+3c\) 

\(\Rightarrow a^3+b^3+c^3\ge a+b+c+2\left(a+b+c\right)-6\ge a+b+c+2\cdot3\sqrt[3]{abc}-6=a+b+c+6-6=a+b+c\)

Vậy...

19 tháng 2 2021

đề là chứng minh bất đẳng thức

bạn nào giải được giúp mình với, mình cảm ơn !

 

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Bài 1: 

$a^3+b^3+c^3=3abc$

$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$

$\Leftrightarrow [(a+b)^3+c^3]-[3ab(a+b)+3abc]=0$

$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2-3ab]=0$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$

$\Rightarrow a+b+c=0$ hoặc $a^2+b^2+c^2-ab-bc-ac=0$

Xét TH $a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
$\Rightarrow a-b=b-c=c-a=0$

$\Leftrightarrow a=b=c$

Vậy $a^3+b^3+c^3=3abc$ khi $a+b+c=0$ hoặc $a=b=c$

Áp dụng vào bài:

Nếu $a+b+c=0$

$A=\frac{-c}{c}+\frac{-b}{b}+\frac{-a}{a}=-1+(-1)+(-1)=-3$

Nếu $a=b=c$

$P=\frac{a+a}{a}+\frac{b+b}{b}+\frac{c+c}{c}=2+2+2=6$

19 tháng 10 2021

Ta có hằng đẳng thức: 

\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=0.\left(a^2+b^2+c^2-ab-bc-ca\right)+3.1=0+3=3\)