1+2sinx.cosx=sinx+2cosx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.1
a.
\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)
b.
\(cosx-\sqrt{3}sinx=1\)
\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
ta có : \(\left(2cosx-1\right)\left(sinx+cosx\right)=1\)
\(\Leftrightarrow2cosx.sinx+2cos^2x-1=sinx+cosx\)
\(\Leftrightarrow sin2x+cos2x=sinx+cosx\)
\(\Rightarrow2x=x\Leftrightarrow x=0\) vậy \(x=0\)
\(\frac{sinx+\left(cosx-1\right)}{1-cosx}=\frac{2cosx}{sinx-\left(cosx-1\right)}\Rightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)
\(\Rightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\Rightarrow sin^2x+cos^2x-1=0\)
=>1-1=0 luôn đúng =>dpcm
\(1+2\sin x.\cos x=\sin x+2\cos x\)
\(\Leftrightarrow\left(2\sin x.\cos x-\sin x\right)-\left(2\cos x-1\right)=0\)
\(\Leftrightarrow\left(2\cos x-1\right)\left(\sin x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos x=\dfrac{1}{2}\\\sin x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\left(k\in Z\right)\)