So sánh \(\sqrt{2013}-\sqrt{2011}\) và \(\sqrt{2012}-\sqrt{2010}\)
Giúp mình gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\)
\(=\sqrt{2011}-\sqrt{2010}< \sqrt{2011}.\sqrt{2010}=B\)
Vậy A<B
Ta gán : \(1992\rightarrow D\); \(1992\rightarrow A\)
\(D=D+1:A=D.\sqrt[D]{A}\)
CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.
Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.
+ \(\sqrt{2013}-\sqrt{2011}=\frac{\left(\sqrt{2013}-\sqrt{2011}\right)\left(\sqrt{2013}+\sqrt{2011}\right)}{\sqrt{2013}+\sqrt{2011}}\)
\(=\frac{2}{\sqrt{2013}+\sqrt{2011}}\)
+ \(\sqrt{2012}-\sqrt{2010}=\frac{\left(\sqrt{2012}-\sqrt{2010}\right)\left(\sqrt{2012}+\sqrt{2010}\right)}{\sqrt{2012}+\sqrt{2010}}\)
\(=\frac{2}{\sqrt{2012}+\sqrt{2010}}\)
+ \(\sqrt{2013}+\sqrt{2011}>\sqrt{2012}+\sqrt{2010}\)
\(\Rightarrow\frac{2}{\sqrt{2013}+\sqrt{2011}}< \frac{2}{\sqrt{2012}+\sqrt{2010}}\)
\(\Rightarrow\sqrt{2013}-\sqrt{2011}< \sqrt{2012}-\sqrt{2010}\)