K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

\(\frac{1^2}{2^2-1}\cdot\frac{3^2}{4^2-1}\cdot\cdot\cdot\cdot\cdot\frac{n^2}{\left(n+1\right)^2-1}\)

\(=\frac{1\cdot1}{1\cdot3}\cdot\frac{3\cdot3}{3\cdot5}\cdot\cdot\cdot\cdot\cdot\frac{n\cdot n}{n\left(n+2\right)}\)

\(=\frac{\left(1\cdot3\cdot\cdot\cdot\cdot\cdot n\right)\left(1\cdot3\cdot\cdot\cdot\cdot\cdot n\right)}{\left(1\cdot3\cdot\cdot\cdot\cdot\cdot n\right)[3\cdot5\cdot\cdot\cdot\cdot\cdot(n+2)]}\)

\(=\frac{1}{n+2}\)

Bài 20:

a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)

b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)

\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)

c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=2

d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)

\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)

\(=8+4\sqrt{3}-4\sqrt{3}-6\)

=2

6 tháng 8 2021

cảm ơn anh ạ

24 tháng 4 2017

Tờ làm luôn, ko ghi đề nữa nhé

\(A=\frac{\frac{24}{12}-\frac{4}{12}+\frac{3}{12}}{\frac{24}{12}+\frac{2}{12}-\frac{3}{12}}\)

\(A=\frac{\frac{23}{12}}{\frac{23}{12}}=1\)

Vậy A=1

24 tháng 4 2017

\(A=\frac{2-\frac{1}{3}+\frac{1}{4}}{2+\frac{1}{6}-\frac{1}{4}}\)\(=\frac{2-\frac{2}{6}+\frac{2}{8}}{2+\frac{2}{12}-\frac{2}{8}}\)\(=\frac{2\left(1-\frac{1}{6}+\frac{1}{8}\right)}{-2\left(1-\frac{1}{12}+\frac{1}{8}\right)}\)\(=-1\)

22 tháng 8 2021

undefined

22 tháng 8 2021

a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)

b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)

=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)

check giùm mik

 

13 tháng 10 2021

\(9x^2-6x+1-9x^2-9x=-15x+1\)

13 tháng 10 2021

\(\left(3x-1\right)^2-9x\left(x+1\right)\)

\(=9x^2-6x+1-9x^2-9x\)

=-15x+1

AH
Akai Haruma
Giáo viên
4 tháng 8 2021

Bài 1 không có cơ sở để tính biểu thức.

AH
Akai Haruma
Giáo viên
4 tháng 8 2021

Bài 2:

a. 

$(6x+1)^2+(6x-1)^2-2(6x+1)(6x-1)$

$=[(6x+1)-(6x-1)]^2=2^2=4$

b.

$3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^8-1)(2^8+1)(2^{16}+1)$
$=(2^{16}-1)(2^{16}+1)=2^{32}-1$

c.

$2C=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)$

$=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)$

$=(5^8-1)(5^8+1)(5^{16}+1)$
$=(5^{16}-1)(5^{16}+1)=5^{32}-1$

$\Rightarrow C=\frac{5^{32}-1}{2}$