tìm tất cả cái giá trị nguyên x để biểu thức : P = (2x - 1)( 5 - 2x) có gt dương
tiện thể ib làm quen nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có P có giá trị dương=> P>0
=> (2x-1)và(5-2x) cùng dấu âm hoặc dương
Xét (2x-1)>0=>x>\(\dfrac{1}{2}\)(1)
(5-2x)>0=>x<\(\dfrac{5}{2}\) (2)
Từ (1) và (2) =>x=1 hoặc x=2
Xét (2x-1)<0=>x<\(\dfrac{1}{2}\)(3)
(5x-2)<0=>x>\(\dfrac{5}{2}\)(4)
Từ (3) và (4) => x ko có giá trị nào
Vậy x=1 hoặc x=2
\(A=\frac{2x-6}{x-1}\)
\(\Leftrightarrow A=\frac{2x-2-4}{x-1}=2-\frac{4}{x-1}\)
Để \(A\in Z\)thì \(\frac{4}{x-1}\in Z\)
\(\Rightarrow\left(x-1\right)\inƯ_4=\left(\pm1;\pm2;\pm4\right)\)
\(\Rightarrow x=\left\{2;3;5;0;-1;-3\right\}\)
Vậy ..........
Ta có : B = 2x+1/x-3 = (2x-6)+7/x-3 = 2+ 7/x-3
Để B nhận giá trị nguyên thì x-3 thuộc Ư(7) = (+-1;+-7)
suy ra : x-3=-1 => x=2 x-3=1 => x=4
x-3=-7 => x=-4 x-3=7 => x=10
Vậy x =(-4;2;4;10) thì B nhận giá trị nguyên
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)
Ta có : \(P=\dfrac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{4}{\left(x-2\right)\left(x-3\right)}-\dfrac{x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x\left(x-3\right)+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x-x+6}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x-3}{x-3}\)
b, Ta có : \(P=\dfrac{2x-3}{x-3}=\dfrac{2x-6+3}{x-3}=2+\dfrac{3}{x-3}\)
- Để P là số nguyên \(\Leftrightarrow x-3\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{4;3;6;0\right\}\)
Vậy ...
a ĐKXĐ : \(x\ne2,x\ne3\)
\(\Rightarrow P=\dfrac{2x\left(x-3\right)+4-\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{x^2-5x+6}\)b Ta có P = \(\dfrac{2x^2-7x+6}{x^2-5x+6}=\dfrac{x^2-5x+6+x^2-2x}{x^2-5x+6}=1+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=1+\dfrac{x}{x-3}\)
Để P\(\in Z\) \(\Leftrightarrow1+\dfrac{x}{x-3}\in Z\) \(\Rightarrow\dfrac{x}{x-3}\in Z\) \(\Rightarrow x⋮x-3\) \(\Rightarrow x-3+3⋮x-3\)
\(\Rightarrow3⋮x-3\) \(\Rightarrow\left(x-3\right)\in\left\{-3;-1;1;3\right\}\) \(\Rightarrow x\in\left\{0;2;4;6\right\}\)
Thử lại ta thấy đúng
Vậy...
Ta có : P = (2x -1)( 5 - 2x) có giá trị dương
<=> P = (2x - 1)( 5- 2x) > 0
<=> 2x - 1 và 5 - 2x cùng dấu
Xét : 2x - 1 < 0 và 5 - 2x < 0 <=> \(\hept{\begin{cases}2x< 1\\2x>5\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>\frac{5}{2}\end{cases}}}\)
=> K có x t/m
Xét 2x - 1 > 0 và 5 - 2x > 0 <=> \(\hept{\begin{cases}2x>1\\2x< 5\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< \frac{5}{2}\end{cases}\Leftrightarrow}\frac{1}{2}< x< \frac{5}{2}}\)
=> x = 1 hoặc x = 2
Vậy....