Rút gọn biểu thức bằng cách nhanh nhất
\(\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(3x-1=y,x+2=z\)
\(\Rightarrow y^2-2yz+z^2=\left(y-z\right)^2\)
\(=\left(3x-1-x-2\right)^2=\left(2x-3\right)^2\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
\(\left(5-3x\right)\left(5+3x\right)-\left(x+1\right)^3\)
\(=25-9x^2-x^3-3x^2-3x-1\)
\(=-x^3-12x^2-3x+24\)
\(=\dfrac{3\left(x+1\right)\left(3x-5\right)}{-\left(3x-5\right)\left(3x+5\right)}=\dfrac{-3\left(x+1\right)}{3x+5}\)
\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)
Ta có:
\(\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
= \(\left(3x^3+1\right)^2-\left(3x\right)^2-\left(3x^3+1\right)^2\)
= \(9x^2\)
Đặt \(3x^3+1=y\)
\(\Rightarrow\left(y-3x\right)\left(y+3x\right)-y^2\)
\(=y^2-9x^2-y^2=-9x^2\)