Cho \(\dfrac{a}{b} = \dfrac{c}{d}\) . Chứng minh :
a, \(\dfrac{a^{2005}}{b^{2005}} = \dfrac{(a-c)^{2005}}{(b-d)^{2005}}\)
b, \(\dfrac{(a^2+b^2)^3}{(c^2+d^2)^3}\) =\(\dfrac{a^3+b^3)^2}{(c^3+d^3)^2}\)
c, \((\dfrac{a-b}{c-d})^{2005}\) = \(\dfrac{2.a^{2005}-b^{2005}}{2.c^{2005}-d^{2005}}\)
d, \(\dfrac{(a^2-b^2)^5}{(c^2-d^2)^5} = \) \(\dfrac{a^{10}+b^{10}}{c^{10}+d^{10}}\)
e, \(\dfrac{2.a^{2005}+5.b^{2005}}{2.c^{2005}+5.d^{2005}}\) = \(\dfrac{(a+b)^{2005}}{(c+d)^{2005}}\)
f, \(\dfrac{(a^{2004}+b^{2004})^{2005}}{(c^{2004}+d^{2004})^{2005}}\) = \(\dfrac{(a^{2005} -b^{2005})^{2004}}{(c^{2005}-d^{2005})^{2004}}\)
cho hỏi chút
\(\frac{a}{b}=\frac{c}{d}\)
trong đó
\(a=c\) hay \(a\ne c\)
\(b=d\) hay \(b\ne d\)
( bài có thiếu điều kiện ko vậy )