K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

a/ \(8x-x^2\)

\(=-\left(x^2-8x\right)\)

\(=-\left(x^2-2\cdot4x+16-16\right)\)

\(=-\left(x-4\right)^2+16\)

Có \(\left(x-4\right)^2\ge0\)

\(\Rightarrow-\left(x-4\right)^2\le0\)

\(\Rightarrow-\left(x-4\right)^2+16\le16\)

\(\Rightarrow GTLN\left(8x-x^2\right)=16\)

với \(\left(x-4\right)^2=0;x=4\)

b/ \(\frac{3}{x^2-4x+10}\)

Xét mẫu số ta có : \(x^2-4x+10\)

\(=x^2-2\cdot2x+4-4+10\)

\(=\left(x-2\right)^2-4+10\)

\(=\left(x-2\right)^2+6\)

Có \(\left(x-2\right)^2\ge0\)\(\Rightarrow\left(x-2\right)^2+6\ge6\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2+6}\le\frac{3}{6}\)

\(\Rightarrow GTLN\frac{3}{x^2-4x+10}=\frac{3}{6}\)

với \(\left(x-2\right)^2=0;x=2\)

18 tháng 6 2019

c/ cái này f GTNN chứ bạn, mik thấy kq ra dương , bạn ktra giúp mik nha.

 \(x^2+y^2\)

Có \(x+y=2\Rightarrow x=2-y\)

\(x^2+y^2\)

\(=\left(2-y\right)^2+y^2\)

\(=4-4y+y^2+y^2\)

\(=4-4y+y^2\)

\(=2y^2-4y+4\)

\(=2\left(y^2-2y+2\right)\)

\(=2\left(y^2-2\cdot1y+1+1\right)\)

\(=2\left[\left(y-1\right)^2+1\right]\)

\(=2\left(y-1\right)^2+2\)

Có \(\left(y-1\right)^2\ge0\Rightarrow\left(y-1\right)^2+2\ge2\)

\(\Rightarrow GTNN2\left(y-1\right)^2+2\ge2\)

 với \(\left(y-1\right)^2=0;y=1\)

\(\Rightarrow GTNN\left(x^2+y^2\right)\ge2\)với\(x=1;y=1\)

6 tháng 1 2021

a)Ta có:

\(A=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)

\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\forall x\)

Vậy MaxA=-3 khi x=1

b) Ta có: \(B=4x-x^2=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4\le4\forall x\)Vậy MaxB=4 khi x=2

Sai rồi bạn

15 tháng 12 2022

a: \(B=1-\sqrt{\left(x-1\right)^2+1}\)

(x-1)^2+1>=1

=>\(\sqrt{\left(x-1\right)^2+1}>=1\)

=>\(B< =0\)

Dấu = xảy ra khi x=1

b: 

ĐKXĐ: -(x+2)^2+2>=0

=>-(x+2)^2>=2

=>(x+2)^2<=2

=>\(-\sqrt{2}-2< =x< =\sqrt{2}-2\)

\(-x^2+4x-2=-\left(x^2-4x+2\right)\)

\(=-\left(x^2-4x+4-2\right)=-\left(x-2\right)^2+2< =2\)

=>\(0< =\sqrt{4x-x^2-2}< =\sqrt{2}\)

=>1<=C<=căn 2+1

\(C_{max}=\sqrt{2}+1\Leftrightarrow x=2\)

16 tháng 8 2021

undefined

16 tháng 8 2021

cám ơn nhìu ạ 

 

4 tháng 10 2021

ta có 4 x 3 y 2   –   8 x 2 y 3   =   4 x 2 y 2 . x   –   4 x 2 y 2 . 2 y   =   4 x 2 y 2 ( x   –   2 y )    

Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)      

Đáp án cần chọn là: C

bấm đúng cho mik đi 

30 tháng 9 2021

Bài 1:

a) \(A=-\left(2x-5\right)^2+6\left|2x-5\right|+4=-\left[\left(2x-5\right)^2-6\left|2x-5\right|+9\right]+13=-\left(\left|2x-5\right|-3\right)^2+13\le13\)

\(maxA=13\Leftrightarrow\) \(\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)

b) \(B=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\)

\(maxC=19\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Bài 2:

\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)

30 tháng 9 2021

bài 2
\(A=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=2.2\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=\left(4x^2+4xy+4y^2\right)+\left(-3x^2-6xy-3y^2\right)\)
\(A=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)

8 tháng 7 2019

\(1a,8x^2y^2-12x^3+6x^2\)

\(=2\left(4x^2y^2-13x^3+3x^2\right)\)

\(b,5x\left(x-y\right)-\left(x-y\right)\)( sai đề hả )

\(=\left(x-y\right)\left(5x-1\right)\)

\(c,4x\left(x-2\right)-\left(2-x\right)^2\)

\(=4x\left(x-2\right)-\left(x-2\right)^2\)

\(=\left(x-2\right)\left(4x-x+2\right)=\left(x-2\right)\left(3x+2\right)\)

\(2,\)\(x\left(x-3\right)-\left(3-x\right)=0\)

\(\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)

8 tháng 7 2019

phần b làm theo đề thôi nhé ko biết đầu bài đúng ko

\(5x\left(x-y\right)-\left(y-y\right)\)

\(=5x\left(x-y\right)\)

HA ha ngắn gọn vãi