\(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\ge3\sqrt[6]{abc}=3\)
Ta có \(\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+b+c+6}=\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{a+b+c+6}\ge1\)
=> \(\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\)
=> \(\left(\frac{1}{2}-\frac{1}{a+2}\right)+\left(\frac{1}{2}-\frac{1}{b+1}\right)+\left(\frac{1}{2}-\frac{1}{c+1}\right)\ge\frac{1}{2}\)
=> \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\le1\)(ĐPCM)
đề bài
cm
1/a+2 + 1/b+2 +1/c+2 <=1
bn p viết đề chứ???
##thiêndi###