Chia số N thành ba phần tỉ lệ nghịch với 2; 5; 6 . Biết tổng các bình phương của ba phần đó là 1144. Tìm số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi 3 phần đó là \(x,y,z\)
Ta có: \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và \(x+y+z=315\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{0,7}=450\)
\(\frac{x}{\frac{1}{3}}=450\Leftrightarrow x=150\)
\(\frac{y}{\frac{1}{5}}=450\Leftrightarrow y=90\)
\(\frac{z}{\frac{1}{6}}=450\Leftrightarrow z=75\)
Vậy 3 phần đó là \(150;90;75\)
Mình làm hơi tắt, bạn thông cảm nhé!
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
Giải:
Gọi ba số được chia lần lượt là a, b và c
Theo đề ra, ta có:
\(a+b+c=230\)
Và \(\left\{{}\begin{matrix}a.\dfrac{1}{3}=b.\dfrac{1}{2}\\a.\dfrac{1}{5}=c.\dfrac{1}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{c}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{15}=\dfrac{b}{10}\\\dfrac{a}{15}=\dfrac{c}{21}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=15.5\\b=10.5\\c=21.5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=75\\b=50\\c=105\end{matrix}\right.\)
Vậy ...
Gọi 3 phần lần lượt tìm là a,b,c :
5a = 2b , 3b = 7c biết rằng a + b + c = 640
\(\Leftrightarrow\frac{a}{2}=\frac{b}{5};\frac{b}{7}=\frac{c}{3}\)
\(\Leftrightarrow\frac{a}{14}=\frac{b}{35}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{35}=\frac{c}{15}=\frac{a+b+c}{14+35+15}=\frac{640}{64}=10\)
\(\Leftrightarrow\frac{a}{14}=10;\frac{b}{35}=10;\frac{c}{15}=10\)
\(\Leftrightarrow a=140;b=350;c=150\)
mình làm trước k nhe
a. Gọi 3 phần tỉ lệ thuận của 117 là a, b, c ( a,b,c >0 )
Theo bài ra ta có : a : b : c = 2 : 3 :4
tổng 3 số : 117
a/2 = b/3 = c/4 = a + b+c/2+3+4 = 117/9 = 13
=> a = 26
b = 39
c = 52
gọi 3 phần lần lượt là a,b,c
=>\(\frac{a}{2}=\frac{b}{3}\)và \(a.3=c.5\)=>\(\frac{a}{2}=\frac{b}{3}\)và\(\frac{a}{5}=\frac{c}{3}\)
=>\(\frac{a}{2.5}=\frac{b}{3.5}\)và \(\frac{a}{5.2}=\frac{c}{3.2}\)
=>\(\frac{a}{10}=\frac{b}{15}\)và \(\frac{a}{10}=\frac{c}{6}\)
=>\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}\)và a+b+c=930
áp dụng t/c dãy tỉ số bằng nhau
=>\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}=\frac{a+b+c}{10+15+6}=\frac{930}{31}=30\)
=>\(\hept{\begin{cases}a=30.10\\b=30.15\\c=30.6\end{cases}}\)=>\(\hept{\begin{cases}a=300\\b=450\\c=180\end{cases}}\)
vậy 3 phần lần lượt là 300;450;180