K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)

Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)

Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)

\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)

Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100)  mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)

18 tháng 6 2019

b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)

20 tháng 8 2020

14 mũ 1 tận cùng là 4 , 14 mũ 2 tận cùng là 6 , 14 mũ 3 tận cùng là 4 , ... , 14 mũ 11 tận cùng là 4 

lũy thừa của số có tận cùng bằng 5 luôn có tận cùng là 5 

lũy thừa của số có tận cùng bằng 6 luôn có tận cùng là 6 

17 mũ 1 tận cùng là 7,  17 mũ 2 tận cùng là 9 , 17 mũ 3 tận cùng là 3 , 17 mũ 4 tận cùng là 1 ,17 mũ 5 tận cùng là 7 , ... , 17 mũ 11 tận cùng là 3 

14 mũ 11 + 15 mũ 1 + 16 mũ 11 + 17 mũ 11 = 4 + 5 + 6 + 3 = 18 

Vậy số tận cùng của phép tính là 8

10 tháng 11 2021

A

10 tháng 11 2021

giúp mik với mấy bạn

10 tháng 11 2021

B. 17 div 2 = 8

Hướng dẫn:

A. 17 div 2 = 5 ( 17:2=8 dư 1, mà phép div là lấy phần nguyên là 17 div 2=8, nên đây là phương án sai)

B. 17 div 2 = 5 17:2=8 dư 1, mà phép div là lấy phần nguyên là 17 div 2=8, nên đây là phương án đúng)

C. 14 mod 5=2 (14:5= 2 dư 4, mà phép mod là lấy phần dư nên 14 mod 5=4 nên đây là phương án sai)

D. 14 mod 4= 2.8 (kết quả phép mod bao giờ cũng là số nguyên ở đây số thập phân nên đây là 1 khẳng định sai)

2 tháng 7 2017

Tìm số dư trong phép chia : 109 345:14

             109345=1093.115=(102Q(14))115

              nên 109345=1(mod14)

  Ta có 14=2*7=> 14=(2*7);14^2=(2*7)^2=2^2*7^2; 14^3=(2*7)^3=2^3*7^3 
=> hai chữ số tận cùng của 14^n là tích giữa 2 chữ số cuối cùng của 7^n và 2^n 
ta có 2^14=16384 
và7=7;7^2=49;7^3=343;7^4=2401;7^5=1680... 
Vậy hai chữ số cuối cùng của 7^n = hai chữ số cuối của 7^(n-4) 
=> hai chữ số cuối của 7^14= hai chữ số cuối của 7^2 
=> hai chữ số cuối của 7^14 là 49 
49*84=4116 
=> hai chữ số cuối của 14^14 là 16 
hai chữ số cuối của (14^14)^14 cũng là 2 chữ số cuối của 16^14 
ta có 16^6=16777216 => hai chữ số cuối cùng của 16^n = hai chữ số cuối của 16^(n-5) 
=> hai chữ số cuối cùng của 16^14 = hai chữ số cuối của 16^9= hai chữ số cuối của 16^4=36 
Vậy hai chữ số tận cùng của 14^14^14 là 36 

2 tháng 8 2021

83

 

23 tháng 1 2018

a,9^9^9^9 so tan cung la: 1

b,14^14^14so tan cung la:6

em ko rõ lớp nào làm được bài toán này nên em chỉ chọn đại 1 lớp thôi, bài toán này chỉ thuộc dạng giải phương trình thôi nhưng em thấy khó quá -_-có biến x và tập hợp dãy số nguyên K ( K[1], K[2], K[3], ... , K[n])có tập hợp dãy số nguyên mod (mod[1], mod[2], mod[3], ..., mod[n]) với mỗi phần tử trong tập hợp mod đc tính theo công thức:mod[i] = k[i] % x ( % là phép toán chia lấy phần dư, i là chỉ số...
Đọc tiếp

em ko rõ lớp nào làm được bài toán này nên em chỉ chọn đại 1 lớp thôi, bài toán này chỉ thuộc dạng giải phương trình thôi nhưng em thấy khó quá -_-

có biến x và tập hợp dãy số nguyên K ( K[1], K[2], K[3], ... , K[n])

có tập hợp dãy số nguyên mod (mod[1], mod[2], mod[3], ..., mod[n]) với mỗi phần tử trong tập hợp mod đc tính theo công thức:

mod[i] = k[i] % x ( % là phép toán chia lấy phần dư, i là chỉ số phần tử tương ứng có trong K và mod).

có tập hợp dãy số nguyên int (int[1], int[2], int[3], ..., int[n]) với mỗi phần tử trong tập hợp int đc tính theo công thức:

mod[i] = k[i] / x ( / là phép toán chia lấy phần nguyên, i là chỉ số phần tử tương ứng có trong K và int).

smod là tổng của các phần tử có trong tập hợp mod ( smod = mod[1] + mod[2] + mod[3] + ... + mod[n] )

sint là à tổng của các phần tử có trong tập hợp int (sint = int[1] + int[2] + int[3] +  ... + int[n])

T đc tính theo công thức sau : \(T = smod - sint - 12 * n\) (n là số phần tử của K như ở trên).

Ví dụ: có x = 922, tập hợp K có : K[1] = 3572 , K[2] = 3427 , K[3] = 7312 thì ta có:

mod[1] = 806, mod[2] = 661, mod[3] = 858

int[1] = 3, int[2] = 3, int[3] = 7

từ đó có smod = 2325 và sint = 13

K có 3 phần tử nên n = 3, từ đó có T =

T = 2325 - 13 - 12*3 = 2276

Giờ em đã có T và tập hợp K, tức là đã biết T và K[1], K[2], K[3], ..., K[n], lập công thức tính x

Em phải làm thế nào ạ ?

 

0