So sánh phân số sau:
\(\frac{2017\cdot2018}{2017\cdot2018+1}\)và\(\frac{2018\cdot2019}{2018\cdot2019+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)
Có \(\frac{1}{2017.2018}>\frac{1}{2018.2019}\)
\(\Rightarrow A< B\)
Ta có:
\(\frac{2017.2019}{2018.2018}\)
\(=\frac{2017.\left(2018+1\right)}{\left(2017+1\right).2018}\)
\(=\frac{2017.2018+2017}{2017.2018+2018}\)
Vì \(2017.2018+2017< 2017.2018+2018\)( tử nhỏ hơn mẫu )
\(\Rightarrow\frac{2017.2018+2017}{2017.2018+2018}< 1\)
Vậy \(\frac{2017.2019}{2018.2018}< 1\)
( Mk nghĩ vậy )
~~~~~~~Hok tốt~~~~~~~
\(\frac{2017.2019}{2018.2018}=\frac{2017.\left(2018+1\right)}{2018.\left(2017+1\right)}=\frac{2017.2018+2017}{2018.2017+2018}\)
\(2017< 2018\Rightarrow2017.2018+2017< 2018.2017+2018\Rightarrow\frac{2017.2018+2017}{2018.2017+2018}< 1\Rightarrow\frac{2017.2019}{2018.2018}< 1\)
a) ta có: \(A=\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)
\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)
\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)
=> A < B
a)A= 2017*2018/2017*2018-1/2017*2018=1-1/2017*2018
B = 2018*2019/2018*2019-1/2018*2019=1-1/2018*2019
vì 1/2017*2018>1/2018*2019=> A<B
b)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-..........-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2018}{2018}-\frac{1}{2018}=\frac{2017}{2018}\)
b) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+..........+\frac{2}{2017.2018}+\frac{2}{2018.2019}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2\left(1-\frac{1}{2019}\right)\)
\(=2\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2.\frac{2018}{2019}\)
\(=\frac{4036}{2019}\)
Phần c tương tự nha
a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + .......+ \(\frac{1}{2017.2018}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + .......+ \(\frac{1}{2017}\) - \(\frac{1}{2018}\)
= 1 - \(\frac{1}{2018}\) = \(\frac{2017}{2018}\)
câu a) mik sửa đề một tí ko biết có đúng ko
câu b , c tương tự nhưng cần lấy tử ra chung
Đặt \(2016=a\) biểu thức trên trở thành:
\(P=\dfrac{\left(a^2\left(a+10\right)+31\left(a+1\right)-1\right)\left(a\left(a+5\right)+4\right)}{\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)}=\dfrac{A}{B}\)
Với \(B=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)\)
Ta có: \(a^2\left(a+10\right)+31\left(a+1\right)-1=a^3+10a^2+31a+30\)
\(=a^3+5a^2+6a+5a^2+25a+30=a\left(a^2+5a+6\right)+5\left(a^2+5a+6\right)\)
\(=\left(a+5\right)\left(a^2+5a+6\right)=\left(a+5\right)\left(a^2+2a+3a+6\right)\)
\(=\left(a+5\right)\left(a+2\right)\left(a+3\right)\)
Và \(a\left(a+5\right)+4=a^2+5a+4=a^2+a+4a+4=\left(a+1\right)\left(a+4\right)\)
\(\Rightarrow A=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)=B\)
\(\Rightarrow P=\dfrac{A}{B}=1\)
Đây thưa anh !!Câu hỏi của Lê Chí Cường - Toán lớp 8 | Học trực tuyến
Bạn đưa lên câu hỏi online ở đâu vậy dạy mình cách với ạ bạn
\(Vì\) \(\frac{2017}{2018}< 1\)mà \(\frac{2019}{2018}>1\)nên
\(\Rightarrow\frac{2017}{2018}< \frac{2019}{2018}\)
Ta đi so sánh \(\frac{2017.2018+1}{2017.2018}\)với\(\frac{2018.2019+1}{2018.2019}\)có :
\(\frac{2017.2018+1}{2017.2018}=\frac{2017.2018}{2017.2018}+\frac{1}{2017.2018}=1+\frac{1}{2017.2018}\left(\cdot\right)\)
\(\frac{2018.2019+1}{2018.2019}=\frac{2018.2019}{2018.2019}+\frac{1}{2018.2019}\left(\cdot\cdot\right)\)
\(\frac{1}{2017.2018}>\frac{1}{2018.2019}\left(\cdot\cdot\cdot\right)\)Từ \(\left(\cdot\right);\left(\cdot\cdot\right)\&\left(\cdot\cdot\cdot\right)\Rightarrow\frac{2017.2018+1}{2017.2018}>\frac{2018.2019+1}{2018.2019}\)
\(\Leftrightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}.\)
#)Trả lời :
\(\frac{2017\times2018}{2017\times2018+1}=\frac{0}{1}=0\)
\(\frac{2018\times2019}{2018\times2019+1}=\frac{0}{1}=0\)
\(\Rightarrow\frac{2017\times2018}{2017\times2018+1}=\frac{2018\times2019}{2018\times2019+1}\)